SOME TIME-INVARIANT STOPPING RULE PROBLEMS

Thomas S. Ferguson

Mathematics Department, UCLA, Los Angeles CA 90024

James B. MacQueen

Anderson Graduate School of Management,UCLA, Los Angeles, CA 90024

Summary: Let X, X5,... be an i.i.d. sequence. We consider three stopping rule
problems for stopping the sequence of partial sums, S, = Y | X;, each of which has a
time- invariance for the payoff that allows us to describe the optimal stopping rule in a
particularly simple form, depending on one or two parameters. For certain distributions
of the X,,, the optimal rules are found explicitly. The three problems are: (1) stopping
with payoff equal to the absolute value of the sum with a cost of time, Y, = |S,| — nc,
(2) stopping with payoff equal to the maximum of the partial sums with a cost of time,
Y, = max{So, S1,...,Sn} — ne, and (3) deciding when to give up trying to attain a goal
or set a record, Y,, = I(S,, > a) —ne, or Y, = I(S, > a) — nc. For each of these problems,
the corresponding problems repeated in time, where the objective is to maximize the rate
of return, can also be solved.
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1. Introduction.

The general optimal stopping problem may be described as follows. We are given a
probability space, (2, F, P), an increasing sequence of o-fields, Fo C Fy C Fy C -+ C
F, and a sequence of real-valued random variables {Yy,Y7,Ys,.... Yo} where V), is F,-
measurableforn = 0,1,2, ..., and Y, is Fo- measurable where F, is the o-field generated
by UF,. The problem is to find an extended-valued stopping rule N (a random variable
with values in {0,1,2,..., 00} such that the event {N =n} isin F, forn =0,1,2,...) to

maximize EYyx. If we define

(1.1) V, = ess supNZnE{YN|fn}
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where the essential supremum is taken over all stopping rules N such that N > n a.s.,

then the stopping rule given by the principle of optimality is
(1.2) N* =min{n >0:Y, =V, }.

The following assumptions are basic for the theory of optimal stopping.

Ar. Esup,qY, < oo.

As. limsup, . Y, <Y, as.

In all the applications that follow, Y., is taken to be —cc.

The following theorems are known. See, for example, Theorem 4.1 and Theorem
4.5" of Chow, Robbins and Siegmund [2], and the theorems of section 1 of Klass [14]. A
description of all optimal stopping rules under assumptions A; and A, may be found in
Klass’s paper.

Theorem 1. Under assumptions Ay and Ay, the stopping rule N* 1s optimal.
Theorem 2. (The optimality equation.) Under assumption Ay,
Vi = max{Y,, E(V,11|Fn)} a.s.

In the applications in this paper, F,, is taken to be the o-field generated by Xy, ..., X,
where the X; are 1.i.d. random variables. Even with this strong assumption, only a handful
of stopping rule problems have been solved. Among these are the following.

(1) The search problem of MacQueen and Miller [16], Derman and Sacks [4] and
Chow and Robbins [1]: X; represents the value of the jth object found. The reward for
stopping at stage n is Y, = X,, — nc or Y,, = max(Xy,...,X,) — nc, where ¢ is a given
positive constant representing the cost per search. Karlin [11] considers this problem with
a discount rather than a cost.

(2) The burglar problem of Haggstrom [10] and Dubins and Teicher [7]: X, represents
the return of the jth burglary. The rewards are Y,, = ™5, where 0 < 3 < 1 represents
the probability of being caught in a burglary, and S, = Xy +... + X,,.

(3) The problem of stopping a sum with negative drift of Darling, Liggett and Taylor
[3]: the X; are assumed to have negative expectation and the rewards are taken to be the

positive part of the partial sums, ¥, = (S,)*.



(4) The problem of stopping a sum during a success run of Starr [17] and Ferguson [9]:
the reward is the sum of the observations since the last failure minus a cost proportional
to time.

In this paper, we consider three other problems which, like the above four, can be
solved using the principle of optimality and some form of time invariance, which reduce
the problems to Markov decision problems with a 1-dimensional state space. In section 2,
we treat the problem of maximizing the absolute value of the partial sum with a constant
cost of time, Y;, = |S,,| — ne. In section 3, we seek to maximize the probability of obtaining
a fixed goal with a constant cost of time, Y,, = I{S, > a} — ne, where a is a fixed
positive number representing the goal. This is a variation of the how-to-gamble-if-you-
must problem of Dubins and Savage [5]. In section 4, we treat the problem of deciding
when to give up trying to increase the maximum of the partial sums when there is a
constant cost of time, Y,, = max(St,...,S5,) — ne. This problem is treated in Dubins and
Schwartz [6] for symmetric Bernoulli random walk. In each case, the optimal stopping rule
is seen to have a simple form, and in some special cases the details are worked out fairly
explicitly.

If a stopping rule problem is repeated in time, for example, in problems of replacing
deteriorating equipment or reordering stock, it makes more sense to maximize the rate of

return,
(1.3) E(Zn)/E(N + ¢1),

where Z,, represents the reward for stopping at n, and where ¢; > 0 represents the set-up

time for the problem, so that E(N 4 ¢1) is the expected total time. Such problems can be

solved when the corresponding stopping rule problems with returns Y,, = Z,, — cn can be

solved for arbitrary ¢ > 0. All three problems treated in this paper have this feature.
The method of solution is to solve for that value of A such that

(1.4) supy>oE{ZNn — MN +¢1)} = 0.

Then, the maximum of (1.3) over all stopping rules N > 0 is equal to A and is achieved by

the same stopping rule that achieves the supremum in (1.4).
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2. Stopping the absolute partial sum.

In this section, we take X, X5,... to be a sample from a known distribution having
mean p and finite second moment. For a given positive constant, ¢, the reward for stopping
after the nth observation is Y,, = |S,| — ne for n = 1,2,.... We can generalize this reward

function slightly to
(2.1) Y, =9(Sn) —ne for n=1,2...,
provided g(x) is linear on both (—o0,0] and [0, c0):

(2.2) g(z) = —arzl(z < 0) + asxl(z > 0),

where a; and ay are both positive. To complete the definition of the stopping rule problem,

we put
(2.3) Yo=0 and Y, = —cc.

To avoid the possibility of obtaining arbitrarily large positive values of Y,,, it is assumed

that
(2.4) —arpp < c¢ and asu < ec.

First we check that conditions Ay and A, are satisfied. For this we use the following
result of Kiefer and Wolfowitz [12]: If X1, X, ... are i.i.d. with finite mean p < 0, then
Esup,>q5n < 00 if, and only if, E(Xf)2 < 00. Note that

SUD,>0Yn = max{sup, >q(azSn — nc),sup, >q(—ai Sy —ne)}.

The result of Kiefer and Wolfowitz can be applied to both terms of the maximum, since
we are assuming that the variance of the X, is finite and (2.4) implies there is a negative
drift to the sums in both cases. Ay then follows since the expectation of the maximum of
two random variables with finite expectation is finite. A, follows easily from the strong

law of large numbers since a.s.
limsup,,_, .Y, = lim, 4o nmax{asS,/n —c¢,—a1S,/n — ¢}

= —o00 =Y.



Thus, the rule N* given by (1.2) is optimal. The main result of this section is the
form of this rule as given in the following theorem.

Theorem 3. If Eg(X) < ¢, then N* = 0. If Eg(X) > ¢, then the optimal rule has the

form
(2.5) N*=min{n>1:5, < -y or S,>y}

for some 1 > 0 and ~v2 > 0.
Proof. First define the function V(z) as the optimal return when one starts with an

initial fortune, z, that is,
(2.6) Vo(z) = supy>oE{g(z + Sn) — Ne}.

Next note that due to the structure of the reward function, the problem at stage n is the
same as the one at stage zero starting with z = S,,. This time-invariance allows us to write

Vi in terms of V5(z) as follows.

V, = ess supNZnE{g(SN) — Ne|F,}
(2.7) = ess supNZnE{g(Sn + SpN=n) — (N —n)c|F,} —ne

= Vo(Sn) — ne a.s.
where S, r = Xpy1 + ... + Xpyr. The optimal rule is

N* =min{n >0:¢g(S,) —ne="V,}
(2.8) =min{n > 0: g(Sn) = Vo(5.)}
= min{n > 0: ¢(S,) =0},

where ¢(z) is defined as

(2.9) d(z) =Volz) —g(2) = supNZOE{g(z + Sn) —g(z) — Nc}.

We will complete the proof by showing that ¢(z) is continuous unimodal with a maximum
at z = 0, that ¢(z) = 0 for |z| sufficiently large, and that ¢(0) > 0 if and only if E¢g(X) > ¢,
thus implying (2.5).



We first note that ¢(z) is nondecreasing for z € (—o0,0], and nonincreasing for z €

[0,00): For z > 0,

[ a2S, for 2+ 5, >0
9(z + 5n) —g(2) = { —(ay +az)z —ay S, for z+ S, <0.
For fixed S, this is a nonincreasing function of z. Hence from (2.9), ¢(z) is a nonincreasing
function of z for z > 0. The case z < 0 follows by symmetry. Continuity holds since
g(z + Sn) — g(2z) is continuous in z uniformly in S,,.
Next note that ¢(z) is equal to zero for |z| sufficiently large. To see this, one can

apply the optimality equation and (2.6) to find
¢(z) = max{0, E(Vo(z + X) — g(2)) — c}.

Then, for all z > 0,
d(z) = max{0, E(¢(z + X) + a2 X ) — ¢}.

If ¢(2) > 0 for all z > 0, then E(¢(z + X)) > ¢ — agpp = € > 0, say, for all z > 0, which
since ¢ is nonincreasing for z > 0 implies that ¢(z) > € for all sufficiently large z, which
in turn implies that E(o(z + X)) > 2e, for sufficiently large z, ete. Eventually this would
imply that E(¢(z + X)) > ¢(0), a contradiction. By symmetry, one may also contradict
@(z) > 0 for all z < 0.

Finally, if Eg(X) > ¢, the simple stopping rule N = 1 shows that ¢(0) > 0. If
Eg(X) < ¢, then the problem is monotone with a reward structure of the form Y, =
Zn — W, with Esup|Z,| < oo and W,, nonnegative and nondecreasing a.s., so that the
one-stage look-ahead rule is optimal. (See Chow et al. [2], Theorem 4.4.) This rule stops
without taking any observations, so that V5 = 0 and hence ¢(0) = 0.

Examples. We give some examples in which the optimal rule can be explicitly evaluated.

From Theorem 3, the problem reduces to finding vy and =, to maximize

(2.10) EYn = Eg(Sny) — cEN

= —alE{SNI(SN < —’71)} + azE{SNI(SN > ’72)} —cEN

where N is the rule (2.5).



(1) Bernoulli trials. Let P(X =1)=wand P(X =-1)=1—m. By (24), u =27 — 1 is
assumed to be between —c/ay and ¢/ay. Assume also that Eg(X) = a1(1 — ) + aaw > ¢
so that both ~y and ~3 are positive in the optimal rule. In this case, we may take 4y and

v to be integers, and the boundaries will be hit exactly, so that (2.10) becomes

(2.11) EYn =a1mP(Sy = —v1) + a2 P(Sny = v2) — ¢EN.

Formulas for these quantities are well known from the problem of gambler’s ruin (Feller

[8], Chap 9). Let t = (1 — x)/x. Then,

1—¢t—"

N = if 7 £1/2
(2.12) P(Sy = o) =
’71 lf w = ]_/2
Y1+ V2
and
(2.13) oy = [ (2 =7)P(Sy =) —y)/u if 7 #1/2
' N7 if £ =1/2.

These expressions may be used in (2.11) to find the values of vy and =, that maximize
EYy.

In the case # = 1/2 an interesting result emerges, namely, the optimal values of ~;
and =9 are equal. This is in spite of the fact that the problem is not symmetric since ay

need not be equal to ay. For 7 = 1/2,

EYn =yiv2[(a1 +az2)/(v1 +72) — ]

From this, one sees that for fixed 41 4+ 72, EYN is maximized by taking ~; and ~, as close
together as possible; that is, v1 = v if 41 + 72 is even, and 41 = 2 + 1 if 41 + 2 1s odd.
A more detailed analysis shows that if a maximum occurs for vy + v2 = 2k + 1 odd, that
is, if
F*[(ar + a2)/(2k) = ] < k(k + D)[(ar +az)/(2k + 1) — ]
> (k+1)°[(a1 + a2)/(2k +2) — o],
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then there is equality throughout, so that the maximum also occurs for v + 72 = 2k and
2(k + 1). Therefore, the maximum of EYxy occurs for 4 = 42. An easy calculation shows

the optimal value of ~; and 7, to be
~1 = 72 = the integer nearest to (ay + az)/(4c).

This also holds if (ay + as)/2 < c.
(2) The double exponential distributions. For an example with continuous variables, con-
sider the three parameter double exponential distribution with parameters gy > 0, us > 0,

and 0 < 7 < 1, and with density,

(A =m)exp{x/pa}/ /1 forxz <0
flo) = {Wexp{—x//,@}//,@ for x > 0.

This distribution has mean y = 7us — (1 — 7)py. To evaluate (2.10), we make use of the

(2.14)

following formulas, due to Kemperman [13] p.67, in which ¢t = —u/pipe = (1 — 7) /s —

™/
(1 —m)(p + p2) — mpo exp{—ty1} _
if t+#£0,
(2.15) P(Sn > ) = (1 —m)p1 exp{ty2} — mpz exp{—ty1 }
B i ualel if t=0.

H1 + 1+ 2 2
The expectation of N can be obtained from this through use of the formulas EN = ESn/u
if w # 0, and EN = ES%/o? if u = 0, where 0% = 2uyus is the variance of (2.14)
when 1 = 0. The values of ESy and ES? may be computed easily, since from the lack
of memory property of the exponential distribution, the distribution of Sy — ~2 given
SN > 72 is exponential with mean o and variance 0% = /,L%. Similarly, given Sy < —~,

the distribution of —(Sx + 71) is exponential with mean p and variance o = p3. Thus,

letting z; = ~; + i, we have

1 .
(2.16) EN = ;[ZQP(SN > ~9) — 21 P(Sny < —1)] if pu#0,
and for y =0,
1
2.7 BN = L+ 03 P(Sh > 20) + (1 + oD)P(Sy < =)
1 0%21 + 0%22
Tt )



To evaluate (2.10), note that E{SNI(Sny > ¥2)} = E{SN|SN > %2 }P(Sn > 72) =
29 P(Sn > ~2), so that (2.10) becomes

EYn =a1:1P(Sy < —v1) + a222P(Sy > 742) — ¢cEN.

The optimal values of vy and ~3 can be explicitly evaluated when p = 0, or equivalently

t=0or 7= p /(g1 + p2). In this case,
EYn = (a1 +az)z129/(21 + 22) — ¢cEN.

Note that this expectation, and hence the optimal values of vy and =3, depend on ay and as
only through the sum, a; +as. To find 4y and v, to maximize this, let A = 0?(ay +az)/c =
2(ay + az)pipi2 /e, and write

e [Azizg — 0321 — 0]z
EYN = ) — Z1%92
o z1 + 29

Setting the partial derivatives of this expression with respect to z; and z to zero leads to

the equations
Az = 0] — 03 + (21 + 22)?
Azy =03 — o + (2 —}—22)2.

Adding and subtracting these equations yields two linear equations as the only positive

solutions, from which we derive

V1= A4+ (p] —p3) /A —

vo = A/A— (i —p3) /A — 2
as the solution, provided both are positive. If either is negative or zero, then so is the
other and the optimal rule is N = 0.
In the special case 1 = s, the Laplace distribution, we find that the optimal values

of ~1 and v, are equal:

(a1 —}— a2)9 _ 1>+

= = 9
n= ( 2¢

where 6 is the common value of p; and ps.



(3) The double geometric distributions. As a generalization of the Bernoulli case, details
may also be worked out for the three parameter double geometric distributions, with
parameters 0 < p; < 1,0 <py; < 1,0 <7 < 1, and probability mass function,

_ [ =m) @ =p)pr " fora=—1,-2,...
(2.18) flz) = {n(l—pz)pg_l forz=1,2,....

Note that either of p; or po may be zero. If both are zero, the distribution becomes the
Bernoulli with probability = of 1 and probability 1 — = of —1.

By (2.4), the mean, y = 7/(1—p2)—(1—7)/(1—p1), is assumed to be between —c/ay
and ¢/az. The distribution of Sy — 72 given Sy > v2 is geometric so that (2.10) becomes

(2.19) EYNn = ar(y1 + 1) P(Sy < =) + az(y2 + p2)P(Sn 2 72) — cEN,

where p; = pj/(1—p;). Expressions for the quantities P(Sn > ~2) and EN may be derived
in a manner similar to those that Kemperman used to obtain the expressions (2.15). Let
t=(1—7m+7pi)/(r+(1—7)pa).

(1—=pi/t)(1 —pat) = (1 = pat)(1 —pu )i~ ™ .
=)L —pi/t = (=) —pryer T #7D

Y1+ if u=0.
Y1+ g1+ 2+ pe

(2.20) P(Sy > ) =

The expectation of N may also be computed as for the double exponential case. In fact,

formulas (2.16) and (2.17) apply here as is, except that here we have

p=nr/(1=p2)—(1=m)/(1=p1)
pe =p;i/(1=p;) j=12

(2.21) zi = +pi/(1—=pj) =12
of =pi/(L=p;)* j=12

o =2(1—p1p2)/[(2—p1 — p2)(1 — p1)(1 — p2)].

When py = p2 = 0, these formulas reduce to (2.12) and (2.13). These expressions may be
used in (2.20) to find the values of 41 and ~, that maximize EYy.

3. Setting a record and attaining a goal.
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In this section, Xy, Xs,... are 1.i.d. with no moment assumptions required. Starting
with initial fortune, Ty = 2, a series of investments with net returns Xy, Xs, ... is made so
that the fortune at stage n is T;, = z + S,,. A given positive number a, the target, and a
positive number ¢, the cost of observation, are fixed. In the problem of setting a record,
the reward for stopping at n is Y,, = I(T}, > a) — nc. In the problem of attaining a goal,
the reward for stopping at n is ¥, = I(T}, > a) — nc. These problems are of the form (2.1)
with g(z) = I(x > a — z) and g(x) = I(x > a — z) respectively. We take Yoo = —o0 to
complete the description of the problem.

The following analysis is analogous to that of the previous section, but because the
function ¢ is discontinuous, a somewhat different argument is needed. It is clear that
assumption Aq is satisfied since Y, is bounded above by 1. Assumption A, is also satisfied
since we take Y. to be —oo. Hence, the rule N* is optimal.

Theorem 4. In the problem of setting a record (resp. attaining a goal), there is an optimal

rule of the form

(3.1) N =min{n>0:T, <a—~ or T,>a}

(resp. N*=min{n>0:T,<a—~ or T,>a})

for some number v > 0.

Proof. First consider the problem of setting a record. The analysis follows the proof
of Theorem 3 through equations (2.6), (2.7), (2.8) and (2.9). We complete the proof by
showing that ¢(z) is zero for z > a, is nondecreasing for z < a, is zero for z sufficiently
small, and is left continuous.

For z > a, Vo(z) = 1 since this can be attained by N = 0, and clearly no larger
return can be attained; hence, ¢(z) = 0. For z < a, g(z + Sp) —g(2) = (2 + S, > a) is
nondecreasing in z for fixed S,. Hence, ¢(z) is nondecreasing as well. That ¢(z) is zero
for z sufficiently small follows using the optimality equation as in the corresponding part
of the proof of Theorem 3.

To see that ¢ is left continuous, note that for z < a,

¢(z) = supn»o[P(Tn > a) — Nel,
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so that for z < a and € > 0,
0<¢(z)—d(z—€) < P(Syv>a—2z)—P(Sy>a—z+¢)
=Pla—z<Sny<a—z+e¢)
where N is the optimal rule for the problem starting at z. Since the right side converges
to zero as € — 0, ¢ is left continuous at z.

In the problem of attaining a goal, the optimal rule of the form stated in Theorem 4,
might not be the rule N* of equation (1.2). Instead we use another form of an optimal
rule given by the principle of optimality, N*' = min{n > 0 : Y, < V!} where V! =
eSS SUP N> 41 E{YN|Fn}. The proof proceeds as in the problem of setting a record except

that now we must show that the function,
P(z) = supy>1{P(Sy > a—z) = cEN} = I(2 > a),

is right continuous, and the argument for this is more complex.
0<¢(z4+€)—¢(z) <P(Sv>a—z—¢€)—P(Sy>a—2)
=Pla—z—e< Sy<a-—2z)
<Pla—z—e< Sy<a-—z)
where N = N(e) is an optimal rule for the problem at z + ¢, and where M = M (¢) is the
rule that stops at the first n such that S, is not in the interval (b — z,a — z — €) for some

fixed sufficiently small b. The events A, = {a — 2 — € < Syy() < a — z} are decreasing as €

decreases to zero, with limit
A=NsoAcCB={b—2< S, <a—=z for all n}.
Hence, as ¢ — 0, P(A.) - P(A) < P(B) =0.

Examples. (1) The Bernoulli case. When the X,, are integer valued, we may assume
that all numerical quantities involved are integers. We consider the problem of attaining

a goal starting with a fortune of z and search for a stopping rule of the form
N=min{n>0:T,<a—~ or T,>a}
(3.2)
=min{n >0:5,<a—z—~ or S,>a—z}

12



to maximize EYy, where a — v < z < a. From the Markov property, there is an optimal
value of ~ that is independent of 2. When the distribution of the X, is Bernoulli with
probability 7 of 1 and probability 1 — = of —1, the terms in EYy = P(Sy > a—2z)+cEN
may be found from (2.12) and (2.13) and the optimal value of v may easily be found by
numerical methods. We illustrate for the symmetric case (m = 1/2) where the optimal ~

can be explicitly evaluated. From (2.12) and (2.13),

EYy=(y+z—a)/y—cla—2z)(y—z—a)

14 efa— =) — (a— =)oy + 1/4).
Therefore, the optimal stopping rule is (3.2), where

~ = the positive integer that minimizes ¢y + 1/

— the integer closest to (1/4+ 1/¢)'/2.

This stopping rule is optimal for all z. For example, if ¢ > 1/2 then v = 1 and it is optimal
to take no observations.

(2) The double exponential. When the distribution of the X,, is continuous, there is no
difference between the problems of attaining a goal and setting a record except when z = a.
We take the problem of setting a record, and, since the optimal value of ~ is independent

of z, we put z = a and consider a stopping rule of the form
N=min{n>0:5,<-y or S,>0}

Assuming the distribution of the X,, to be double exponential of the form (2.14), we may
write an explicit expression for EYy using (2.15), (2.16) and (2.17) with vy = v and 42 = 0,
and find the value of 4 to maximize it by numerical methods. For the special case u = 0,

we find for v > 0,

2 2
21 c 0521 + 07 12
3.3 EYy = — —[zippy + ——mm—
(3:3) N z1 + o 02[1M2 z1 + o ]
where z; = ~ + p1 . Using the values of ¢ and 0? given in section 3 for the double

exponential, it is easy to find the optimal rule. If ¢ > 7 = uy /(1 + p2), then EYy is
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negative for all v > 0, so the optimal ~ is 0 and the optimal rule is N = 0. If ¢ < m, then

EYy has a unique maximum at

v = (15 — p3 4 21 p2 /)" ? — iy — pua.

(3) The double geometric. For the distribution (2.18) and integral 4, we obtain the same
formula for EYx when p = 0 as in (3.3) but with the values of the moments as given in

(2.21). The optimal value of v is then the nonnegative integer closest to

(07 =03 + 0 e+ 1/4)7 — iy — pis.

4. Stopping the maximum of a partial sum.
We assume that Xy, Xo,... are i.i.d. with E(X1)? < oo and y = EX < ¢, where

¢ > 0 is the cost per observation (¢ may be —oc). The return for stopping at n is
Y, = max(So, S1,...,Sn) —ne= M, —nc

where Sy = 0. Thus, the problem treated in this section is in spirit much like the problem
of setting a record, but instead of a zero/one reward for failing/achieving a new record,
the reward is the actual numerical value of the record.

To check condition Ay, note that
SUP,>0Yn = supnzo(max(so, Si,...,8) —ne)

— sup,s0(Sa — )

n

— sup,so( S (X — o).

1

Thus, Ay follows from the theorem of Kiefer and Wolfowitz.
To check condition A;, we must show that for any number B no matter how large
negative, there exists an integer N(B) a.s. such that Y}, < B for all n > N(B). Note that

since Sp,/n — p a.s. and p < ¢, there exists for every number B an integer M(B) a.s. such

that S,, —nc < B for all n > M(B). Then, for n > M(B),

Y, < max[max(0,S1,..., Sy (p)) — nc, B].
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For n sufficiently large, the first term of the max can also be made less than B so that
Y, < B, proving A,.
Theorem 5. In the problem of stopping the mazimum of a partial sum, there is an optimal

rule of the form
(4.1) N =min{n>0: M, — S, >~}

for some v > 0.

Proof. To evaluate the rule given by the principle of optimality, we need to evaluate
V> = ess supNZnE{MN — N|F,}
= essSUP N>, [Mn — ne + E{max(0, My _,, — My, + S,) — (N —n)c|Fn}]
=M, —nc+ ¢(M, — S,) as.

where M = max(0,S57,...,5), S, = Sn—r — Sy, and
¢(2) = supysoE{max(0, M, — z) — Ne}.
Therefore, the rule given by the principle of optimality becomes
N* =min{n > 0: ¢(M, — S,) <0}.

It is easy to see that ¢(z) is nonincreasing and uniformly continuous in z, and that ¢(z) =0
for sufficiently large z. Hence, there is some v > 0 such that N* has the form given in the
theorem.

Below, we give some examples in which the optimal rule can be explicitly evaluated.
For the continuous time analog of the stopping rule N, the joint Laplace transform of My
and N has been derived by Taylor [18] for Brownian motion, and by Lehoczky [15] for

more general diffusion processes.

Examples. (1) The Bernoulli case. If P(X = 1) =x and P(X = —1) =1 — 7, then for
the rule N of Theorem 5, My — Sy = ~ with probability 1, so that

EYy = EMy — cEN
:E(MN —SN)—}—ESN—CEN

=~ + uEN —cEN.
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To compute EN, we note that the movement of the Markov chain Z, = M, — 5, is like
Bernoulli random walk with reflection at —1/2 and absorption at ~.

When 7« = 1/2, there is a simple argument for evaluating EN. Z,, starts at zero and if
it ever tries to go to —1 it gets put back to zero. Eventually it hits v and stops. Construct
Z! from Z, as follows: if Z; has tried to go to —1 an even number of times for 1 < j <n,
then Z! = Z,; otherwise, Z!, = —Z, — 1. Then it is easy to see that Z] is a symmetric
random walk starting at zero and stopping when it hits v or —y — 1. Hence, from the
gambler’s ruin problem, EN = ~(v 4 1).

Thus, when 7 = 1/2 so that 4 = 0, we have EYy = v — ¢y(y + 1). The optimal rule
is given by the largest integer 4 that is less than or equal to 1/(2¢).

(2) The double exponential distribution. For the distribution with density (2.14), we have

(4.2) EYN:E(MN—SN)—}-ESN—CEN
=5+ —(c—p)EN
where = s — (1 — 7)py < ¢. We must find EN for the process Z, = M, — S, which

stops as soon as Z, > v. To do this, we first find ESn.

Let K denote the number of times a new record is set; that is, let K denote the

cardinality of the set {k:0 < k < N, Sy = My}. Then K has a geometric distribution,
P(K =k)=(1—p)p* for k=0,1,2,...

where p is the probability that the random walk S,, becomes positive before it becomes

less than —~. This may be found from (2.15) with 44 = v and 42 = 0 and is given by

_ m(L =) (p + p2) — mpo exp{—ty}

(4.3) pP= (1 —m)py — wpg exp{—ty} for p+#0
= - 1 =2 for ©u=0
H1 + 2 + Y z1 + Lo
where t = —p/(p11p12), and where 2y = 4 + p1. Now note that Sy can be written as

Sy = (U +...4+Uk)—(v+ W), where the U; are the I jumps above the maximum each
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having an exponential distribution with mean ps, and W is the jump below —~, which is

exponential with mean g, the variables K, U; and W being independent. Hence,

ESN = 12 EK — v — p1 = pap/(1 — p) — 21.

From this, we may obtain EN when p # 0, by the formula EN = ESx/u. The value of
EN when p = 0 may be found using EN = ES3;/0?. When p = 0, we have

ES?V =VarSy = agEK + /,L%Var(]() + af
= oip/(1—p) +u3p/(1 —p)* + of
= 0321//«62 + z1(21 + p2) -}-Uf-

Hence,

EN = [p2p/(1 —p) — z1]/p for p#0

(4.4)
EN = [21(21 + pia + 03/ us) + 0i]/0? for p=0.

We illustrate for the case p = 0. The optimal rule is of the form (4.1) where v is
chosen to minimize EYy, which is a quadratic function of 4. The optimizing value of ~ is

1 [o? o2
4.5 S 72
( ) ~ 5 [ - H2 /«02} H1

if this quantity is positive, and v = 0 otherwise. Using the values of these moments for

the double exponential case, we find

v=0 if ¢ papa/(p + p2)
Y= M1M2/C — H1 — 2 otherwise.

It is interesting that this value is symmetric in gy and s even though the problem is not.

(3) The double geometric. For the double geometric distribution of (2.18), we are to find

that integer v that maximizes (4.2) where EN and p are given by the same formulas (4.4)

and (4.3) but where the moments are given by (2.21). When p = 0, (4.2) is a quadratic

function of 4, and the optimal integer ~ is the nearest nonnegative integer to the expression
2

(4.5). This time, because we do not have o5 = p2, the resulting optimal value of ~ is not

symmetric in p; and ps.
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