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Abstract: In a round-robin tournament with n players, each player
plays every other player once, resulting in (g) games. Let X;; denote
the score by which player 7 beats player j, with X;; = —X;; for all ¢ # j.
If we take X;; = 0 for all 7, then S; = 2;21 X;; denotes the total score of
Player 7, for 1 = 1,2, ...,n. To test the hypothesis, Hy, that the players
are equally skillful, in the sense that the X;; for ¢+ < j are i.i.d. with
mean () and common variance, we suggest rejecting Hy if V,, = 3.7 S? is
too large. It is shown that an associated statistic, W,,, a generalization
of the circular triads statistic of Kendall and Babington Smith, is easier
to work with and more stable. We establish the asymptotic normality
of V,, and W,, under general conditions. As an illustration, the results
are applied to data obtained on the Greek Soccer League 2016-2017.
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1. Introduction

This paper deals with the question ”skill or luck” in team games, and more specifically in
round-robin tournaments.

In a round-robin tournament with n players, each player plays every other player
once, resulting in (g) games. We may of course, interpret a player as a team of players
all (within the same team) having exactly the same objective to win, and this is why we
only use the term player. We also mention that a tournament where each player faces
each other exactly twice is called a double round-robin tournament. This often occurs in
team sports where there is a noticable home field advantage, ond in games like chess in
which the player that moves first has an advantage. We confine here our interest to simple
round-robin tournaments. However in the last Section, we treat a double round-robin
tournament, namely of the Greek Soccer League 2016-2017, but we treat it as a single
round-robin tournament by combining the two games.

1



Let X;; denote the score by which player (or team) i beats player j, with X;; = =X,
for all ¢ # j. We take X;; = 0 for all 7, so that

Si=Y Xi (1)
j=1

denotes the total score of Player i, for : = 1,2,....,n. We wish to test the null hypothesis
that the players are equally skilful in the sense that the X;; for i < j are 1.i.d. with mean
7€10.

Note that ). S; = 0, so that the S; will be spread out about 0. We tend to think
of the players with larger S; as the more skillful, even though the null hypothesis may be
true. Therefore, we should first test this hypothesis against alternatives in which some
individuals are generally more skillful than others. When some players are better than
others, we expect the scores will be more spread out than under the null hypothesis. To
test the null hypothesis that the players are equally skillful, we may use some measure of
spread of the distribution of the 5;. One simple such measure is the sum of squares,

V= Xn: S2. (2)
=1

We reject the null hypothesis if V;, is too large. There is a large literature on the problem of
ranking the players based on the Bradley-Terry model in paired comparisons. For exampie,
see the paper of Caron and Doucet (2012). See also Iida (2009).

In the case of win-lose outcomes, where the score for a game is +1 for the winner
and —1 for the loser, this problem becomes the one introduced by Kendall and Babington
Smith (1940) in their treatment of paired comparisons. There in the testing problem, the
statistic, V,, is seen to be equivalent to the circular triads statistic, d,,, which counts the
number of triads of players, 7, 7 and k, in which ¢ beats j, j beats k and k beats 7. This is
discussed in detail in Section 4.

In Section 2, we introduce a statistic, W,,, related to V,, in much the same way that d,
is related to V), in the win-lose outcome case. We see that V,, and W, are asymptotically
equivalent in the testing problem, and why W, should be preferred to V,,. In Section 3,
we show the asymptotically normality of V,, and W,, under the null hypothesis.

In Section 5, as an example, we apply our results to data of the Greek Soccer League
2016-2017, where 16 teams face each other twice. For comparison, we also test the null
hypothesis using a randomization test based on W,. If one looks at these data, one feels
that one needs no mathematics to decide that the null-hypothesis should be rejected. And
so do our tests. This is only for illustration, and our choice is for two reasons:

First, the size of the table of data from the Greek Soccer League is large enough to
give an idea of the variance of the data, and not too big to fit nicely in a single table.

Second, and in particular, we know that Joe Gani had a close relationship with Greece.
His grandparents were from western Greece. His paternal grandfather came from Ioannina
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and his mother’s family from the Greek island of Corfu. His attachment to Greece was
very visible at the Conference in honour of his retirement, co-organised by faculty members
from UC Santa Barbara and several Greek universities, and held in Athens in 1995. See
the special volume i.h. of J.M. Gani (Heyde et al, editors (1996) containing a wide range
of subjects presented at the conference, to which we also had the honour to contribute.

2. Towards a more suitable test

If we use V,, as the test statistic, then we will need to approximate the variance of V.
This will require that the fourth moment of the X;; is finite. Therefore, we take our null
hypothesis, that the players are equally skillful, to be

Hy: The X;; for 1+ < j are i.i.d. with mean 0 and finite fourth moment. (3)

The common variance is denoted by ¢? and will be estimated from the data. Under this
hypothesis, all the S; have mean zero and variance (n — 1)a?.

We present another way to test this hypothesis. We look at triplets of players and
see if one of the players dominates the other two, while another player is dominated. If
among players ¢, 7 and k, player 7 is the strongest one and player k is the weakest, then
Xij, Xir and X3 would have positive expectation with the expectation X;; largest of the
three. As a measure of skill vs. luck for the triplet {ijk}, we may use the quantity

Yije = Xi Xap — X5 X + X X (4)

For example in a win/lose tournament where each X;; is +1 or —1, Y;;; will be +1 if one
of the players beats the other two, and —3 in the non-transitive case where, say, ¢ beats j,

J beats k and k beats i. Under the null hypothesis, E(Y;;z) = 0 for all {ijk}.

Note that Y;;i is independent of the order of the subscripts, i.e. Yi;iz = Y = Yir;
etc. By this symmetry, E(Y;;;) will be positive if any of the three players is the dominant
one. The sum of these quantities over all triplets

Wy, = ZZZKKk Yijk: (5)

may be used to test the null hypothesis of equality of skill of the players involved in the
game. We reject the null hypothesis if W, is too large.

It is interesting to see that these two tests are asymptotically equivalent for large n.
We see this using the following lemma.

Lemma 1. V, =) _ Zi#xfj oW, =2) Ziqxfj +2W,.

Proof. First note that

512 :ZZXZ‘]‘Xik :ZX?j+QZZj<kXinik- (6)
k J

J
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Therefore,

v _252 ZZX +QZZZ]<kXZJXZk

— QZ Zl<] QZ Z Zi<j<k[Xinik — Xinjk + XikX]‘k] (7)
=2) > XG4, m

Under the assumption that the X;; for 1 < j are 1.i.d. with finite fourth moment, the
term ZKjXZZj is asymptotically normal with variance of order n?. The term W, as
we shall see in Theorem 1, is also asymptotically normal, but With variance of order n3.
Thus in the testing problem the term W,, dominates > ZK] i;» implying that the tests
based on the statistics V,, and W, are asymptotically equivalent.

We now collect several results which will be used in the proof of asympotic normality
of W,,. We shall speak of the triplets {ijk} as triangles and use the notation Y; for Y;;; of
(4) when t is the triangle {17k}, with vertices 7, j, k and edges 17, ik and jk.

Lemma 2. Assume the X;; are independent for i < j and that E(X;;) = 0.

(a) If triangles s and t do not have a common edge, then Y, and Y; are independent.

(b) If {17} is an edge of triangle t then E(Y}|X;;) = 0 a.s.

(c) If triangle t has at most one of its edges in common with a collection {s : s € S}
of triangles, then E(Y;U) = 0 for any measurable function U of {Ys : s € S} with finite
expectation.

(d) If triangles s and t are distinct, then E(Y;Y;) = 0.

Proof. (a) If s and ¢ do not have a common edge, then Yy and Y; are constructed of
independent X’s and so are independent.

(b) If t = {ijk}, then
E(Y:|Xij) = XijE(Xir) — Xi;E(X1) + E(Xa Xjr) = 0. (8)
(c) If t has no edge in common with {s: s € S}, then Y; is independent of {Y; : s € S} and

hence U, so E(Y;U) = 0. If t has edge {ij} in common with {s: s € S}, then, conditionally
given X;;, Y; is independent of U, so

E(Y:U) = E(E(Y,U|Xy;)) = E(E(Y: |X3)E(U|X5)) = 0 (9)

from (b). Part (d) follows immediately from (c), since distinct triangles have at most one
edge in common. ®m

Part (d) says that the Y; are pairwise uncorrelated.
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Lemma 3. Assume that the X;; are independent for 1 < j with means zero and variances

o?. Then,

(a) E(W,) =0.

(b) Var(Y;) = 304

(c) Var(W,,) = (g) 30,

Proof. (a) Since E(Y;) = 0 for all ¢, E(W,,) = 0.

(b) In Var(Y;) = E(X;; Xir. — Xi; Xk + X X5)?, all cross product terms disappear and
we are left with E(Xi]‘Xik)2 + E(Xi]‘X]‘k)2 + E(Xikak)2 = 304.

(c) From Lemma 2(d), Cov(Y;,Y;) = 0 for distinct s and ¢, so Var(W,,) = Var(}_,Y;) =
>, Var(Y;) = (3)30%. =

Lemma 4. Assume that the X;; for i < j are independent with means zero, variances o2,

and fourth moments y1y = E(X};). Then,
(a) Wy and 3, X}, are uncorrelated,

(b) E(V,,) = n(n — 1)c?

(c) Var(V,,) = 2n(n — 1)[ug + (n — 3)0*].
Proof. (a) Cov(Wn,ZK] ) =5, Zi<j Cov(Yt,XZZj). If {ij} is not an edge of ¢, then

Y, and X;; are mdependent and so have covariance zero. If {ij} is an edge of ¢, say
t = {Z]k} then COV(Y}, ) COV( (sz — X]k)7Xz2]) = ( since E(sz _ X]k) = 0.
(b) E(Va) = 37 E( l)—nE(sf), (b) follows from

ZX1]ZX1k =B ZX =(n—1)o>
1=2

(c) Since from part (a) W, and ZK] X2 are uncorrelated, we have from Lemma 1,

Var(V,,) = 4Var( Z X ) + 4Var(W,,) = 4] Z Var(X;;) + Var(W,)]
1< 1<j

- 4[(’;) (s — o*) + (g) 304] = 4(’2‘) [ta + (n — 3)']. m

As a test of the null hypothesis, V), is easier to understand than W,, but W, has
two advantages. First, to use V,,, estimates of its mean and variance are needed, and to
estimate its variance, an estimate of p14 is needed. The mean of W, is zero and its variance
does not involve py. Secondly, from Lemma 1, V,, is obtained from 2W, by adding a
random quantity which is uncorrelated with W, as seen from Lemma 4(a). Since the
distribution of this random quantity seems to have little to do with the null hypothesis —
divided by (g), it is just an estimate of 0> — we conclude that W, is more sensitive to
deviations from the null hypothesis.

3. Asymptotic Normality of W,.

We now show the approximate normality of W,, (and hence V,,) for large n.

5



Theorem 1. Under the assumption that the X;; for i < j are i.i.d. with mean zero and
finite fourth moment,

Wy

AT 10

The method of proof uses the following theorem of Stein (1986), pg. 110, on the
approximation of the distribution of a sum of possibly dependent nonidentically distributed
random variables by a normal distribution.

Stein’s Theorem. Let T be a finite index set, and fort € T, let Z; be a random variable
with E(Z,) = 0 and E(Z}) < 0co. Let W = Zte’f . Suppose that for every t € T, there

is a set Sy C T such that
ED 7Y z]=1. (11)
teT  s€S,

Then

sup [P(W <w) — ®(w)| <2 Z Z (Z1Zs — 045)]

teT s€S;

+ \/gE (;r ‘E(ZtHZs}sQSt) ) (12)

+ 23/4W—1/4\/E<Z 1Z0 () 25)2)

teT SES,

where 045 = E(Z,75) and ®(w) represents the standard normal distribution function.

In the application of this theorem to our problem, 7T is taken to be the set of all
triangles, T ={t = {ijk}: 1 <i < j <k <n}. Fort = {ijk} € T, let

Zy =Y /6n = [ Xij Xip — X5 Xk + Xin X k] /0n, (13)
where §,, is a normalizing constant chosen to satisfy (11). We have E(Z;) = 0. For all

t € T, S; is taken to be the set of all triangles that have an edge in common with ¢
(including ¢ itself). The Z; are pairwise uncorrelated from Lemma 2(d), so from (11)

=E)) 7 Y ZJ=E[} 7] ()304/52. (14)

teT s€S; teT

where the last equality in (14) follows from Lemma 3(c). Thus,

6n = 2\/n(n —1)(n —2)/2. (15)

The following lemma will be useful.



Lemma 5. (a) For distinct triangles r, s and t, E(Z,Z,Z;) = 0 except when r, s and t
are three of the faces of some tetrahedron as in Figure 1(a).

(b) For distinct r, s, t and u, E{Z,Z,Z,Z,} = 0 unless r, s, t and u form the four faces of
a tetrahedron or four triangles arranged as in Figure 1(b).

(a) (b)

Figure 1.

Proof. (a) If t has at most one edge in common with r and s, then E(Z,7,Z5) = 0 from
Lemma 2(c). Therefore, to be dependent, each of r, s and ¢ have two edges in common
with the other two. This only happens if r, s and ¢ form three faces of a tetrahedron.

(b) If ¢ has at most one edge in common with {r, s, u}, then again from Lemma 2(c)
with U = Z,Z,Z,, we have E(Z,ZsZ;Z,) = 0. Otherwise, each of r, s, t and u have at
least two edges in common with the others. This can only happen if they form the four
faces of a tetrahedron or four triangles arranged as in Figure 1(b). =

Proof of Theorem 1. We now apply Stein’s Theorem to conclude asymptotic normality
of W, by showing that each of the three terms on the right side of (12) tend to zero as n
goes to infinity. This will imply asymptotic normality of W,.

The sets Sy have been chosen so that Z; is independent of {Z,}sgs,. Therefore,
E(Zi[{Zs}sgs,) = E(Z;) = 0 for all t € T. Thus the second term on the right of (12) is

equal to zero.

The expectation in the third term on the right of (12) may be written

B(Sia Y 2r) = (5)e (1215 20°) 16)

teT S€S; S€S;

for an arbitrary t € 7. Each Z; is of the order of n=3/2, but each sum over s € Sy is of
order n and so, without cancellation, (16) would be of order n'/2. If we let S! denote the
set Sy with the point ¢ removed, S; = S¢\{t}, we may expand (16) as follows

(X 1z1(Y 2)°) = (3 )E(z1z+ X 2?)

teT SES: SES!

_ (Z) (B1Z ) + 280202 Y 20+ B(120 Y Y 2,2.))

sES] res] ses]
(17)



The term (Q)E|Zt|3 is of order n=3/2 and so is asymptotically negligible. The central term
is equal to zero from Lemma 2(c). The last term may be written

(el )+ (s)e(z s, 3 22) -

reS] s€S] ,r#s

Since there are 3(n — 3) elements in S!, the first term is of order n~!/2. By Lemma 5(a),
the expectation E(|Z;|Z,Z;) is zero unless r, s and t are three of the faces of a tetrahedron.
Since t is fixed, there are only n — 3 choices for the fourth vertex of the tetrahedron, so the
double sum reduces to a single sum of order n. Thus, the second term in (18) is also of
order n~'/2, This shows the third term on the right of (12) converges to zero as n — co.

Now we treat the first term on the right of (12). Since o5, = 0 for s # ¢, the expectation
in this term may be written

BN N (22, —00) =E(Y_ (2} — o)+ Y 2:2,])"

teT s€S, teT SES]
=B(Y [(Z2—ow)+ > 22) Y (22— o) + Y. Zu2])
teT SES] u€T res’,
=B( Y. Y (2 o2 —oua)) + QE(Z(zf —o) Y 2.2,)
teET ueT teT uweT res,

(Y Y Y 22.2.2,)

teT seS] ueT res),

(19)
If u g Sy, then Z; and Z, are independent, so E((Z} — 64)(Z2 — 0yu)) = 0. Thus the
inside sum in the first expectation on the right of (19) reduces to a sum over u € S;. There
are order n terms in this sum and order n® terms in the sum over #, but each term is of
order n7%, so the first term on the right of (19) is of order n™? and so is negligible. The
expectation in the second term vanishes if u = t or if r = ¢, so we may take the summation
assuming ¢, v and r are distinct. By Lemma 5(a), the expectation is zero unless ¢, u and r
are three faces of a tetrahedron. As in the analysis of the last term of (18), the inside two
summations reduce to a single summation of order n. So this term is of order n™2 and is

negligible.
Now consider the last term of (19). In summing when ¢t = u, the quadruple sum
reduces to
S Y Ezzz) 0
teT s€S] res]

This expectation is zero unless s = r, or unless ¢, s and r are faces of some tetrahedron.
The total of both of these possibilities is of order n, so the summation is of order n=2
and may be neglected. Thus we may assume ¢ # v in the quadruple summation in (19).
The same argument follows if u = s: E(Z;Z2Z,) is not zero only if r = t or if ¢, s and r
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are faces of a tetrahedron. And similarly for summing when ¢ = r and when r = s. All
such terms are of order n=2. We may now assume that r, s,  and u are distinct in the
quadruple summation. By Lemma 5(b), the expectation is zero unless r, s, t and u are a
tetrahedron or they form an arrangement as in Figure 1(b). With ¢ fixed, the number of
tetrahedrons is of order n and the number of arrangements as in Figure 1(b) is of order n?
(corresponding to the choice of the other two vertices). Since there are (g) terms in the
choice of t, there are order n® non-zero terms in the quadruple sum. Thus the quadruple
sum is of order n~'. This shows that the first term on the right of (12) goes to zero as

n — 0o, completing the proof. =

It is nice to see that this proof goes through under the weaker assumptions that the
X;; are independent with zero means and uniformly bounded fourth moments, and with
Var(W,)/n® bounded away from zero. Also, and in particular, it is not required that the
variances of the X;; be equal.

4. Specialization to Win/Lose Outcomes.

Suppose n players play a round-robin tournament with win or lose outcomes. Then there
are (1) games and

1 if 1 beats j
Xij = {—1 if 7 beats 1 (21)

for all + # 7 with X;; = 0 for all 7. It is assumed that the X;; are independent for all 7 and
J with ¢ < j. The null hypothesis that no skill is involved becomes P(X,;; = 1) = 1/2 for
all 7 # 7. Under this hypothesis, (S; + n — 1)/2 has a binomial distribution B(n —1,1/2)
for all 7. We may use V,, or W, to test this hypothesis.

This problem goes back to Kendall and Babington Smith (1940) in their treatment of
paired comparisons. They suggest using the number of circular triads as the test statistic.
A circular triad is a triangle, 17k, in which ¢ beats j, j beats k and k beats 7, or conversely
J beats 1, 1 beats k and k beats j. In terms of the X;;, the indicator of this event is

1 iin]‘:X]‘k:in:1OI‘Xi]‘:X]‘k:in:—l

ik = . 22
Uijk {0 otherwise. (22)

The number of circular triads is then

dn = Z Z Zi<j<k Uijk- (23)

We reject the null hypothesis if d,, is too small.

This test is equivalent (not just asymptotically) to the test that rejects the null hy-
pothesis if V;, or W, is too large. To see this, note that for the Yj;i of (4), we have
Yb‘k =41if Uijk = (0 and Yb‘k = -3if Uijk = 1. Thus,

Yijr =1—4U;js,
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and from (5),
Wy = ZZZKKk (1 —4Uijx) = (g) — ddn,

and from Lemma, 1,

n n n n(n—1)2
n =2 2W, = 2 2 —8d, = ——— — 8d,,.
v <2>+ W <2>+ <3> s -

In Kendall and Babington Smith (1940), it is shown that under the null hypothesis,
the distribution of d,, has the the following properties.

Lemma 6. (a) For n > 2 odd, the support of d,, is {0,1,...,n(n* —1)/24}.
(b) For n > 2 even, the support of d,, is {0,1,...,n(n? —4)/24}.

Lemma 7. (a) E(d,) = (Z) %

(b) Var(dy) = (g) %

In Moran (1947) it is shown that d,, is asymptotically normal. This also follows from
Theorem 1. This means that, asymptotically, d,, acts as the sum of (g) independent
Bernoulli variables with success probability 1/4. Specifically,

() (1) v

This may not be surprising since d,, is the sum of (g) identically distributed Bernoulli
variables. However, lack of independence of the summands skews the distribution of d,,
considerably for smaller values of n. Kendall and Babington Smith provide tables of the
exact distribution of d,, for n < 7. These tables were extended to n < 10 by Alway
(1962). These tables show a significant negative skewness. Based on the third and fourth
moments of U,, Kendall and Babington Smith suggest using a chi-square distribution as
an approximation to the distribution of d, for small n.

A detailed analysis of the accuracy of the chi-square approximation to the distribution
of d,, was undertaken by Knezek, Wallace, and Dunn-Rankin (1998). In addition, they
extend the distribution tables for U, for n up to 15. (Getting the exact distribution for
n = 15 is quite a feat, since there are 2'°° ~ 4. F31 outcomes to consider.) They conclude
that the chi-square approximation is quite good for these values and should continue to
be good for larger n. The exact description of the chi-square distribution used for the
approximation may be found in this paper and in Kendall and Gibbons (1990), pp 186-
187.

To get an idea of the accuracy of the normal approximation to the distribution of d,,
consider the case of n = 15 and the one-sided tests at the 5% and 1% levels if significance.
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dy5 has mean (135)i = 113.75 and variance 85.3125. The 5% cutoff point is then 113.75 —
1.645 - v/85.3125 = 98.56. From the tables of Knezek et al., the true P(dys < 98 is
.0634. Both cutoff points 96 and 97 have probability of rejection closer to .05. The 1% is
113.75—2,33-4/85.3125 = 92.23. The true P(dy5 < 92) is .022, while the true P(d;5 < 88)

is .010088. We see that the normal approximation can be misleading even for n as large
as 15.

5. An Example.

We now illustrate our appooach to testing the null hypothesis by V,, and W,,. The Greek
Soccer League consists of 16 teams from around Greece. The tournament schedule calls
for each team to play every other team twice during the season, once at home and once as
a visitor. This results in 15 - 16 = 240 games.

The original data consists of the final scores of all the games of the 2016-2017 season.
This allows some leeway in choosing the payoff for each game. For instance, if a team wins
by score of 3 goals to 1, we might consider the difference, +2, to be the score awarded
to that team. However, there are various reasons to consider just win, lose or tie as the
outcome of each game, the main reason being that this is the true objective of each team,
the actual margin of victory or defeat being essentially unimportant. So we consider each
game to have three outcomes for a team, a win, a loss or a tie.

An important consideration here is home-team advantage. Of the 240 games played,
66 of them ended in a tie. Of the remaining 174 games, 116 were won by the home team
and only 58 were won by the visiting team. This translates to a home-team advantage of
116/174 = 67% that a decisive game will be won by the home team. There is no need to
perform a significance test to see that the home-team advantage plays a very significant
role in the outcome. However, since each team plays every other team once at home and
once as visitor, we may combine the two games played. Thus, we take as the score, X;;,
of team 7 over team j, to be the number of wins of 7 over 7 minus the number of wins of
J over i. The scores, X;;, then take as possible values the numbers —2,—1,0,1,2, and of
course we have X;; = —X ;.

In Figure 2, we present the names of the sixteen teams followed by the Table of the
X;j;. The entry, X;;, is the score of the team of row 7 against the team of column 7. In the
final column of the table we list the total scores, S(i) of the teams, which is just the sum
of the numbers in each row.

For the null hypothesis that the teams are equally matched, it is assumed that the
X;; for © < 7 are independent, identically and symmetrically distributed about zero. That
the distribution be symmetric about zero, although natural in this context, is not really
needed; it may be replaced by the assumption that the mean be zero.

It is easy to compute the statistic V,,. It is just the sum of the squares of the numbers
in the last column of the table, namely, V,, = 1268. The easiest way to compute the
statistic, Wy, is to use Lemma 1. We find > > X?j =192, so W, = (V,,/2) — 192 =
634 — 192 = 442.

1<
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1. AEK 9. Panathinaikos

2. Asteras Tripolis 10. Panetolikos

3. Atromitos 11. Panionios

4. Iraklis 12. PAOK

5. AOK Kerkira 13. PAS Gianena

6. Larissa 14. Platanias

7. Levadiakos 15. Veria

8. Olimpiakos 16. Xanthi

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 x| O 1] O 1| 2| 2| 0O|=1|—=1] O] O] O 2| 2| 1
21 0] *|—=2| 0|—-2| 1| 1|-1|-2| 1|-1|-2] 1] 0|—-1]|-1
31—-1] 2| *| 2|—=1| 1| 1|-2|-2]|-2|-2] 0|—-1| 0] 2| 1
41 0 0|—=2] *| 1] 0] O0|—-2|—-1| O|—-2|—1| 2|—1| 1|-2
5/—1| 2| 1|-=1| *| 1| O0|-1|—-1]-1] 0]|—-2|-2|—-2] 0| 1
6|—2|—-1|—-1| O|—=1| *| 1| O|—=1] O O|—=2|—-1|—1] 1] O
71 -2]—-1|-1| 0| O0|—=1| *|—1|—=1| O| O|—=2| 1|-=2| O O
1 0 1| 2| 2| 1| 0O 1] | 0] 2| 0] 0| 2| 1| 2| 2
9| 1| 2| 2| 1| 1| 1| 1| O *| 1| 1] 0o 1] 0] 1]-2
100 1|—=1| 2 0O 1| O O|=2|—-1] *|[—-2]|-2|—-1|—-1] 1]|-2
11 0 1| 2 2 0 O O O|—=1] 2| *| O|—=1] O] O] 2
121 0 2 O 1| 2 2 2 0 0] 2 0] x| 0] 2| 1] 0
13 0|—=1| 1|=2| 2| 1|-1|=2(—=1] 1| 1] O] =*| 0] 0O|-1
14(-21 0 0| 1| 2| 1| 2|—=1| 0| 1| 0|=2| 0O =*| 1]-2
15(=-2| 1|-2|-1| 0|—=1| O0|—=2|—=1|—=1| O|—=1| O|—=1| =*|-—2
16(—1| 1|-=1] 2|=1| 0O O|=2| 2| 2|=2| 0| 1] 2| 2| =«

Figure 2. Table of the Scores X;;

To perform the large sample test based on W, as implied by Theorem 1, it is necessary
to obtain an estimate of the variance, o%. Since EX;; = 0, this is easily done with the

(g) = 192/120 = 1.6

estimate

&QZfoj/

1<

From Lemma 3, we may then estimate of the standard deviation of W,, by 624/ (136)3 =
1.6 - 40.99 = 65.58. This leads to a z-score of 442/65.58 = 6.74, clear evidence that the

teams are not evenly matched.

We may also test the null hypothesis using the statistic V}, and Lemma 4. For this,

we estimate the mean of V,, by



and the fourth moment of X by

) n
fia = Zij/(Q) — 624/120 = 5.2,

1<J
Then Lemma 4 leads to an estimate of the variance of V,, as
2-16-15-(5.24+ 13- 1.62) = 18470.4

whose square root is about 135.9. The z-score is (1268 — 384)/135.9 = 6.50, a slightly
weaker indication of the falsity of the null hypothesis. But the need to estimate both
the mean of the statistic and the fourth moment of X from the data makes this test less
reliable.

A randomization test based on the statistic W, may also be used to test the null
hypothesis. This is a nonparametric test that avoids computing the estimate of the variance
and also avoids wondering if n is large enough for approximate normality to be reasonable,
To impliment the randomization test for the Greek Soccer League data, we take the (126) =
120 data values X;; for ¢ < j, rearrange them in random order, and randomly change the
signs of these values with probability 1/2 each. Then the data is completed by assigning
X;i = —Xij for j > 1. From this, one randomized value of W, is computed. This is done
many times to obtain an estimate of the null distribution of W,,, to which the observed
value of W,, may be compared. Since Zi<j X?j stays constant in ths computation, we

see from Lemma 1 that the randomization test using V;, is equivalent to the one using W,.

This computation was carried out 10,000 times. We estimate the 5% cutoff point for
the statistic to be about 118 and the 1% cutoff point to be about 179. Since the observed
statistic was W,, = 464, we clearly reject the null hypothesis of equally matched teams.
This may be compared to the similar cutoff points using the normal approximation to
the distribution of W,. Using & = 65.58, the 5% cutoff point is 108 (compared to 118
above) and the 1% cutoff point is 153 (compared to 179). This indicates that the normal
approximation rejects the null hypothesis when true somewhat more often than advertised

at the 1% and 5% levels.

For help with the Greek Soccer League data, we would like to thank Costis Melolidakis
of the Mathematics Department at the University of Athens, and Nicolas Christou of the
Statistics Department at UCLA.
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