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1. INTRODUCTION AND SUMMARY

The purpose of this article is to investigate two simple
sequential nonparametric problems from a Bayesian viewpoint using
a Dirichlet process prior, the estimation of a distribution func-
tion on the real line, and the estimation of the mean of a dis-
tribution on the real line.

Let F denote a distribution function on the real line, R,

1 X2""
estimating F, the statistician is to choose a distribution func-

and let X represent a sample from F. In the problem of

tion F with loss measured by the function

L1 L, B = [ Fe0 - Fe)AN)

where W is some finite measure (weight function) on R. In the
problem of estimating the mean of F, the statistician chooses a

point 4 € IR and loses the amount

1.2) L, ) = (-2

where u = [xdF(x) is assumed to exist for this problem. There is
a positive cost ¢ > 0 each time the statistician looks at a new
observation. After each observation, the statistician must de-
cide whether to take another observation or to stop sampling and

choose an estimate.
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We attempt to find Bayes solutions to these problems when the
prior distribution of F is the Dirichlet process, ®(v), where c
is a given finite non-null measure on IR. See [3] for the ele-
mentary facts about this prior that are used below. In problem
(1.1), it is assumed that o and W have no common atoms. It is
useful to use the distribution function form of the measure a, in
which o has the representation o = ME where M = o(IR) is a pos-
itive number, and that FG is a distribution function. Thus, let
F & B(MFO). Then EF = FO. Moreover, if Xl,Xz,...,Xn is a sample
from F, then the posterior distribution of F given Xl,...,Xn is
S{(M+n)Fn) wheTe
M n

(1.3) Fn = Men PO ¥ Men

F
n)

where Fn is the sample distribution functionm,

~ 1 n
(1.4) F (x) = ;;% Tx ) O

and Is(x) represents the indicator function of the set S.

We recommend the use of the 1- or 2-stage look-ahead rules
for these problems. The theorems of this paper give a partial
justification for this recommendation. In Theorems 1 and 3, it
is scen that the k-stage look-ahead modified rules are easily
computed for k as large as [(M+n+2)/2], and the resulting rule is
seen to be comparable to the 1-stage look-ahead rule. In
Theorems 2 and 4, conditions are given under which the 1l-stage

look-ahead rule is optimal.
I1. ESTIMATING A DISTRIBUTION FUNCTION
Let F €9 OHRQ and let Xl”"’xn be a sample of fixed size n

from F. In estimating F with loss (1.1), the Bayes estimate is

e (F|Xl,...,Xn] = Fn of (1.3) and the minimum Bayes risk is
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(2.1) [ Var (F () [X 500X AW (x)

- st [ B () (1-F_ ()W ().
In the extension of this problem to the sequential case, it is
well-known (see, for example [2] Theorem 7.1) that once we decide
to stop, the Bayes terminal estimate is the same as for the fixed
sample size problem, so that if we stop after observing Xl""’xﬁ
the Bayes terminal estimate is Fn' Thus we are only concerned
with finding the Bayes stopping rule.

It is only in very exceptional parametric cases that an
optimal stopping rule can be found explicitly. Usually, an
approximation to the optimal rule is sought, for cxample the
rule optimal among those limited to a fixed bounded number N of
observations. However, it is still only in special parametric
cases -- when there exists a small dimensional sufficient statis-
tic whatever the sample size -- that such a rule can be computed
for moderate N in a reasonable length of time. In the problems
considered here, sufficiency does not reduce the dimensionality
of the observations, and the backward induction method necessary
to compute such rules involves the approximation of functions of
N variables.

As a practical matter, there are some very good suboptimal
rules. These are the k-stage look-ahead rules.

The k-stage Look-ahead rule (k-s£a) 45 the nule that at each
stage stops or continues according fo whethern the nule optimal
among those faking at most k more observations stops on contin-
ues. Usually, and it is so for our problems, the 1-sla is triv-
ial to compute. The 2-sla involves a l-dimensional numerical
integration to be performed at each stage, while the 3-sla (about
as complex as one would like to consider) involves a 2-dimension-
al numerical integration at each stage.

The 1-sla is not only casy to compute; it is reasonably good

for estimation problems, and the 2-sla or 3-sla is generally
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quite good. In fact, Bickel and Yahav [1] have shown that for
sufficiently regular estimation problems with quadratic loss, the
1-sla is asymptotically pointwise optimal as ¢ + 0.

A simplification may be made in these rules. This is due to
the fact that in our problems, if the k-stage look-ahead rule
tells you to continue, it is optimal to continue, for there is at
least one rule that continues (but stops in at most k stages) and
gives a smaller expected cost plus loss than stopping at once.
This property suggests a simplification of the 2-sla: use the 1-
sla until it tells you tostop and then use the 2-sla. Similarly,
the 3-sla is equivalent to: ﬁse the 1-sla until it tells you to
stop, (then the 2-sla until it tells you to stop), and then use
the 3-sla.

Let us evaluate the l-stage look-ahead rule, sometimes called
the "myopic'" rule. First, we discover what it requires us to do
at the very first stage before looking at any observations. If
we stop and make a terminal decision without sampling, we lose

(2.1) with n = 0, namely
1 :
(2.2 T / P (1-F ) dW.

If we take one observation Xl and then stop, we lose, conditional
on X;, the amount c+(M+2)_1 fFl(l—Fl)dw. On the average, we

expect to lose

(2.3) c+(M+2) LS F)(1-F )W = ¢ + Lij Fo(1-F )dw.

(M+1)
This computation is easily made using (1.3), (1.4) and eﬁl = Fy,
which holds since the marginal distribution of Xl is FO' There-
fore, the l-stage look-ahead rule calls for stopping without

taking any observations if (2.2) < (2.3), or equivalently, if
2
(2.4) [ Fy(L-Fp)dW < c(M+1)*.

After observing Xl""’xn’ the 1-stage look-ahead rule calls for
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stopping if the updated posterior distribution satisfies an up-
dated version of (2.4). That is, the 1-stage Leok-ahead rule
calls for stopping agten the firnst n for which

(2.5) [ E_(1-F )aW < ¢ (Eine 1)

Since the left side is bounded above by W(IR)/4, and the right
side increases to infinity as n tends to infinity, the 1-stage
look-ahead rule eventually calls for stopping, and bounds on the
maximum sample size can be found.

When the l-sla finally tells us to stop, how can we tell if it
is optimal to stop? Two partial answers to this question are
given in Theorems 1 and 2 below. The first theorem involves the
notion of the k-stage modified sequential decision problem, due
originally to Magwire [4]. The only difference between this
problem and the ordinary sequential decision problem is that if
stage k is reached the terminal loss is set equal to zero, in
which case it is certainly optimal to stop.

The k-stage Look-ahead modified nule (k-sfam) £s the rule
that at each stage stops on continues accornding to whether the
rube optimal for the modified problem in which the terminal loss
is set to zero if you take k more observations stops or contin-
ues.

In contrast to the k-sla which never takes too many observa-
tions, the k-slam never takes too few. If the k-sfam calls for
stopping, it 45 optimak fo stop, for any rule that continues
costs at least as much as the best rule for the modified problem
which is the cost of stopping without taking any further observa-

tions. The optimal Bayes rule thereforc lies somewhere between
the k-sla and the k-slam. Bickel and Yahav [1] have shown that

the l-slam is asymptotically pointwise optimal as ¢ > 0 for suffi-
ciently regular hypothesis testing problems.
If the l-sla is myopic, the l-slam is very myopic. It com-

pares the expected terminal loss of taking no further observa-
tions with the cost of one more observation. It does not depend
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on the distribution of that observation. In our problem, the

l1-slam calls for stopping without taking any observations if
(2.6) L[ F (1-F)dW < ¢
’ M+1 0 0 -

The general 1-sfam therefonre calls for stopping aftern the finst n
forn which

(2.7) [P (1-F)dW < c(Mm+1).

This differs from the 1-sla only in the term (M+n+l) replacing
(M+n+l)2, but this is a very big difference if M or n is large.
Since we expect the l-sla to be reasonably good, this means we
expect the l-slam to be poor. However, the following theorem
shows that we can completely describe the k-slam for k < M/2 + 1.
This leads to a modified rule that is comparable to the 1l-sla.

This theorem is based on two simple lemmas.

LEMMA 1.

M 5 o &
(2.8) [ F (1-F JdW = oo= [ F( (1-F,)dW + [ F_(1-F )dw

B

M+n

+ M—nzf (Fo-ﬁn)zdw.
(M+n)

This identity is easily checked by straightforward calcula-

tion using (1.3).

LEMMA 2. I4 j and k ane non-negative integers and Lf
M > 2(k-1) then

(2.9 (k-3) (M+j) (M#j+1) < KM(M+1).

Proo4. The result is obvious with equality if j = 0. So
assume j > 0. From (k-j) (M+j) (M+j+1)-kM(M+1) = kj(2M+1)+kj2
- j(M+j)(M+j+1), we see that (2.9) holds if and only if

(2.10) k(2M+j+1) < (M+j) (M+j+1).

Using the assumption M > 2(k-1) or k < M/2+1, we will be finished
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if we show (M/2+1)(2M+j+1) < (M+j) (M+j+1) or

(M+2) (M+(3+1)/2) < (M#j) (M+j+1). This is true with equality if
j = 1, while for j > 2, (M+2) < (M+j) and M+(j+1)/2 < M+j+l, com-
pleting the proof.

THEOREM 1. 1§ M > 2(k-1), then the k-slam calls for stopping
at stage 0 4if and only if | Fo(1-Fy)dW < k(M+1)c.

Proof. The k-slam calls for stopping if and only if
1
M+1
j = k-1,...,L.

f Fo(l-Fo)dW < g A ¢1 where, inductively, ¢k = 0 and for

_ . 1
b -8[m1n(——M+j+l i F (1—Fj}dw, c o+ ¢j+1)]x1,...,xj_1].
Suppose that f Fo(l—Fo)dW = k(M+1)c; we will show ¢j = (k-j)c for
j=1,...,k-1. An application of (2.8) shows
[ F.(1-F.)dW > oo [ F_(1-F)dW a.s
j j — M+j 0 0 U

_ M(M+1)kc
M+j :

Inductively, using Lemma 2,

i M(M+1) ke )
ok ] P O F )W > aigaeen 2 ¢ 50 %1 T ©

1 M(M+1) ke _
m f Fl(l—Fl)dW imi (k-l}c 0] ¢l = (k-l)c.

]

Thus, if [ Fo(1-Fy)dW
larger values of c¢ it is uniquely optimal to stop, and for

k(M+1)c, the k-slam is indifferent. For

smaller values of ¢, it is uniquely optimal to continue, comple-

ting the proof.

Since it is easy to use, we prefer the k-slam to the l-slam
where k :]_M/2+1J (|x |is the greatest integer less than or equal
to x.) In fact, since M increases with n, we may let k depend
on n and use the | (M#n+2)/2 |-slam: stop agter the §inst n gor
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which
{211 [P (I-F_)dW < c(Mtn+l) | (M+n+2)/2].

This is much closer to the 1-sla (2.5).

This theorem is of use in the evaluation of the (k+l)-slam
where k < (M+1)/2 with the numerical computation of only one in-
tegral since after one observation M increases by 1 and the k-

slam is then immediately computable.

We now consider the possible optimality of the l-stage look-
ahead rule. We have noted that if the 1l-sla calls for continuing
at a certain n, it is optimal to continue at that n. When the
loss function is bounded as is the case here, there is a simple
sufficient condition for the converse. If the 1-stage Look-ahead
ke calls gon stopping at a centain n, and Lf for almost all
futures stanting grom that Lime the 1-stage Look-ahead wule calls
fon stopping, then Lt Ls optimal to stop at that n. This condi-
tion is well-known (see for example, [2] Theorems 7.5 and 7.6),
but it is rather strong, and useful only in special cases. In
our case, if (2.5) holds almost surely for n = 0,1,2,..., then it
is optimal to stop without taking any observations. The follow-

ing theorem shows that this can occasionally occur.

THEOREM 2. Conditions (2.5) hold almost surely fon
n=20,1,2,..., provided

(1) [ Ty (1-F)dW < cOw1)?

(i1) M max(f FydW, [(1-F,)dw) < acw1)°, and

(iii) M > (Y5 - 1)/2 = .618...

Proog. Condition (2.4) is exactly condition (i). To evalu-

ate the other inequalities (2.5) we need
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(2.12) [ F (1-F )aw = (Msn) "2 [(MFD+nﬁn)(M(l-F0)+n(1-ﬁn)}dw
%,

m 1 o
= (M+n) 22 fFO(l—FO)dW + M) [f Fyawe | (1-F,)dw]
i=1 X.

-

1
+n? [B (1-F )aw)
n n .

It is easy to see that for all x,
X

(2.13) / FodW + [(1-Fq)dW < max(f F,dW, f(1-F,)dw)
X

-0

so that using (i) and (ii),
[ FL(1-F)dW < (M+1)"2M° fE_(1-F_)dw
il C g 070

+ M max (f FodW, f(l-FO)&W)}

< (M+1)'2{M2c{M+1)2 + 4c(M+1)3} = c{M+2)'2 a.s.

It remains to be shown that (2.5) holds a.s. for n = 2,3,...
The summation in the last term on the right side of (2.12) may be
bounded as follows.

2

2
2 ita o n n
n® [R (1-F )dW < = [ dW < % max(f FodW, [(1-F,)dw).

Therefore, from (i), (ii), and (2.12),

2
S i+ dniitddl = Mgl}
(M+n)

[ F (-F )aw <
Thus (2.5) holds a.s. if

1) 20 an 1) + 20”03 < onene) 2 e 2.
This reduces to the inequality

(2.14) 0 5_n3+2n2(2M+1) + n[4M2-5-2M" L2 Me1) (3Me2) .
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As a function of n, the right side of (2.14) has positive slope
for n > 2 when (iii) is satisfied. Therefore, (2.5) holds a.s.
for all n > 2 if (2.14) holds a.s. for m = 2; that is, if

0 <M v oM+ 2-aml = 200208 « M- ol
This is satisfied if M* + M - 1 > 0 which is exactly condition

(iii), completing the proof.

This theorem gives conditions for the 1-stage look-ahead rule
to be optimal at the initial stage. If (i) is satisfied, so that
the 1-stage look-ahead rule calls for stopping, then it is opti-
mal to stop without taking any observations provided (ii) and
(iii) are satisfied. At subsequent stages, FO and M are updated
to Fn and M+n so that condition (iii) becomes automatically sat-
isfied.

COROLLARY. TIf, after n > 1 observations have been taken, the

1-sfage Look-ahead nule calls fon stopping, it is optimal to stop
provided

(2.15) (ten)max([ F_dW, [(1-F )W} < dc (Mn+1).

How 1likely is it, when (2.5) becomes satisfied for the first
time, that (2.15) will be satisfied also? 1In a practical case
where we expect to take many observations before stopping, we
expect approximate equality in (2.5) when we do stop. In such a

case, (2.15) becomes approximately

(2.16) max{ [ F dw, f(l—Fn)dW} <4 an(l-Fn)dW

(assuming M is small compared to n). Since Fn converges almost
surely to the true F, this gives us an indication of how likely
it will be that the 1-sla will stop only when it is optimal to
stop.

As an example, let Fo(x) = x on [0,1], the uniform distribu-

tion, and suppose dW = dx on [0,1]. Then
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J Fo(1-Fg)dw = z x(1-x)dx = 1/6, and [FydW = [(1-F )dW = 1/2.
The 1-sla calls for stopping without taking any observations if
1/6 f_c(M+1)2. This condition implies condition (ii) of Theorem
1, since 4c(M+1)3 > 4(M+#1)/6 > M/2. Therefore, the l-sla is
optimal at the initial stage if M > .618... . If the 1-sla calls
for at least one observation, and if M is large, it is likely
that condition (2.15) will be satisfied a.s. when we stop. This
is because (2.16) is satisfied for n = 0 (i.e. 1/2 < 2/3), and,
if M is large, it is likely that F will be close to the uniform.
It is possible, though, that the 1-sla will call for stopping
after the first observation and that it will not be optimal to
stop. In cases when (2.15) is not satisfied when you stop, it
is best to check the 2-sla.

We mention that the results of this section carry over to es-
timating a distribution function in d-dimensions. The statements
of Theorems 1 and 2 are the same except that condition (ii) of

Theorem 2 must be replaced by the more general statement

(ii") M max{f[FO(x}(l—I[z m)(x)J + (1-p0(x))1[z m)(x)]dW(x}}
Z 2 3

< 4C(M+1)3.

Here, [z,«) represents the set of points x € I{d such that the
inequality z < x holds for each coordinate. In general for
d > 2, (ii') does not reduce to (ii). The proofs were written to
apply to this generalization unchanged.

Let us look briefly at the difficulties involved in computing
the 2-sla and 3-sla. If we stop without sampling, we lose (2.2).
If we take one observation Xl, and use the best 1l-stage look-
ahead procedure from there, we pay ¢ plus the minimum of (2.2)

and (2.3) updated by one observation, namely,
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(2.17)  cminGas [ F, (1-F)dW,c + —2L (R (1-F.)dW)
R | et Ly

1 i 1
= ct iy fFl[l—Fl)dW + min(0,c- S fFl(l—Fl)dW).
(M+2)
Thus, for the 2-sla, we stop without taking observations if (2.2)

is smaller than the expectations of (2.17), that is if

(2.18) *1—-2— [Fy(1-Fp)dW < c-& max(0, —1—2 [P, (1-F ) di-c).
(M+1) (M+2)

This differs from the 1-sla of (2.4) by the subtraction of the

nonnegative term on the right. The expectation in this term can

be computed using numerical approximations without too much

difficulty.

Similarly, for the 3-sla, if we take one observation and use
the best 2-stage procedure from there, we pay c¢ plus the minimum
of (2.2) and the expectation of (2.17) updated by one observa-
tion. The rule corresponding to (2.18) is more completed and can

be evaluated in general only by iterated numerical integration.
III. ESTIMATING THE MEAN OF A DISTRIBUTION

Let F € 8(a) where a = MFO as before, and consider estimating

the mean u of F with loss (1.2) based on a sample of fixed size

n, Xl,...,Xn from F. It is assumed that the second moment of FD

is finite. The Bayes estimate of u is
e Mo . B o=
"n T Mn Mo M+n "n

(51

where My = fxdFO is the prior estimate of the mean and

in = n_lz? Ri' The minimum conditional Bayes risk is

(3.2) Var(u|Xl,...,Xn) = oi/(M+n+1)
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where oi is the variance of the distribution Fn‘ It may be com-

puted in a formula analogous to (2.8)

# 2 o202 Moo .2
(3.3) oy = [Gx-u)dF (x) = (Mogens] + g (X -u0) )/ (Men)
where og is the variance of the distribution FO and
2 _ -1n g 2
s, =1 El(xi - Xn) g

Let us evaluate the 1-sla for the sequential problem. If we
stop without sampling, our expected loss is cg/(M+1). If we take

one observation and stop, our conditional expected loss plus cost

given XI is ¢ + 0%(M+2)_1, so on the average we expect to lose
1 1 2 M 2
¢+ Me2 &g c + L) 053y (Mc0 + ﬁ?T_GO)
— M 02
(M+1)2 0

At the first stage, the 1-sla calls for stopping if
(3.4) Ué.ﬁ c(M+l}2.

Hence, the l-stage look ahead rule is: &fop affer the 4inst n
for which

2
n

(3.5) o fAC(M+n+l)2.

On the other hand, the 1-slam calls for stopping without taking
any observations if Ug < ¢(M+1), so that the general l-slam is:
stop aften the finst n for which

2
n

(3.6) o < c(M+n+1).

The difference between the stopping rules (3.5) and (3.6) is
great if M or n is large. However, we can narrow the gap by

considering the k-slam as in the following analogue of Theorem 1.
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THEOREM 3. I§ M > 2(k-1), then the k-slam calls fon stopping
i and only < aé < k(M+1)c.

The proof of this theorem is exactly the same as Theorem 1
with an(l-Fn]dW replaced by oi and the use of Lemma 1 replaced
by (3:53] -

As before, we may use the k-slam and allow k to depend on n:

the 1,M+g+2_|—4£am calls forn stopping ajften the st n for which

(3.7) 0121 < (M+n+1)LE121+—2— &

The difference between the stopping rules (3.5) and (3.7) is
not great, and the optimal stopping rule lies between them.

As before, if the 1-sla calls for continuing at a certain n,
it is optimal to continue at that n. If the 1-sla calls for
stopping at a certain n, and if for almost all futures proceeding
from that n the l-stage look-ahead calls for stopping, it is
optimal to stop at that n. A glance at (3.5) shows that if Fn
were the distribution function of an unbounded distribution,
(3.5) could not hold almost surely, since si and in may take
unboundedly large values. To obtain a result similar to
Theorem 1, we must therefore assume that the distribution of Xl
is bounded. In the following theorem, we take the distribution
of IXII to be bounded by 1.

THEOREM 4. Assume that o gives all ¢f Lts mass to the in-
terval [-1,1]. Then, conditions (3.5) are satisfied a.s. fox
n=0,1,2,..., provided

(i) US < c(M+1]2

(ii) M(1+|u0])2 < c(3M+4)(M+1)2, and

1i1) i Mlug| < 1, then 1+ 5 2 < (3’ + 10M + 9).
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Proof. Condition (3.5) with n = 0 is exactly condition (i).

With n = 1, (3.5) is satisfied since

2 M 2 M 2
uy = gy + ——— (X, -u,)
1 M+1 70 (M+1)2 1°0
M 2 M 2
< O F (I+|u. D¢ a.s.
M+1 ~0 (M+1)2 0

Mc(M+1) + c(3M+4) = c(M+2)2

| A

using only (i) and (ii). To show (3.5) for n > 2, it is suffi-

cient to show

M(M+l)2
n

e % (X —uo}z

M+n 2
N Tl O [ —E—-(M+n+l) -c

a.S.

| A

c[n2 + n(3M+2)+(M+1) (3M+1)]

using (i). Since all in| <1 a.s., we have

7]
n
=N

n
Z X? - iz <1 - iz a.s.
1 1 n — n

so that it is sufficient to show

52 M o 2 2
(3.8) I—Xn ¥ o (Xnvuo) < cln +n(3M+2)+(M+1) (3M+1)] a.s.

We seek the maximum of the left side of this inequality over
e T . 2 g
variation of X in [-1,1]. The function 1—x2 + M(x—uo) /(M+n) is

qwmmﬂcinxwﬁhmnhwmatx=-mbm.

Case 1. M[uol < 1. In this case, the maximum occurs at a
point inside the interval [-1,1] for all n. Thus it is suffi-

cient to show (3.8) with Xn replaced by -Mu /n, namely

1+

g|=

ug £ c[n2 + n(3M+2)+(M+1) (3M+1) ]

for all n > 2. But the left side is decreasing in n and the

right side is increasing in n, so it is sufficient to show this
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inequality for n = 2. For n = 2, this reduces to (iii).

Case 2. M|u,| > For n > Mlug|, the left side of (3.8) is

Is
M
bounded above by 1 + 5

“3 as in Case 1. For 1 <n < M|p0|, the
maximum of (3.8) as Rn varies in [-1,1] occurs at +1, and the

maximum value is M(l+|u0|)2/(M+n). These bounds for the left
side of (3.8) are decreasing in n, and the right side is increas-
ing in n, so it is sufficient to show this inequality for n = 1.
But this is exactly (3.5) which we have already shown to be sat-

isfied. This completes the proof.

The conditions of Theorem 4 are sufficient for the optimality
of the decision to stop without taking any observations. Unfor-
tunately, conditions (ii) and (iii) are somewhat stronger than
their counterparts of Theorem 2 although (iii) could be weakened
slightly. This makes it less likely that the theorem will be of
use, partly because, no doubt, the 1l-stage look-ahead rule is
less likely to be optimal.

The uniform distribution on [-1,1] is a critical case. Let
FO be the distribution function of 9((-1,1), so that Wy = 0 and
Cr2

0
out taking any observations if

= 1/3. The l-stage look-ahead rule calls for stopping with-

(3.9) 3 < conn’.

Condition (ii), that M jrc(3M+4)(M+1)2, and condition (iii), that
1 i_c(SM2 + 10M + 9), are then automatically satisfied. Thus, it
is optimal to stop without taking observations if M and c are
such that (3.9) is satisfied.

Thus, for the uniform distribution (ii) and (iii) are satis-
fied when (i) is, but barely. If the variance GS were any smal-
ler than 1/3, (ii) would not follow from (i) except for special

values of M. Also, if the mean M, were not exactly zero, (ii)
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would not follow in general from (i). The same goes for condi-
tion (iii).

If ¢ is such that the sample size will be at least moderate
before the l-stage look-ahead calls for stopping, then we expect
approximate equality in (i) with cg and M updated. With M large,
in order that (i) imply (ii) and (iii), it is necessary that
2
the 1-stage look-ahead rule is optimal when stopping occurs only

> 1/3 and o be close to zero. All in all, it is likely that

if the true distribution is U-shaped. More recourse to the 2-
stage or 3-stage look-ahead rule will probably be required for
this problem than for the problem of estimation of a distribution
function.

The 2-stage look-ahead rule may be computed as in the earlier
problem, and is found to have a similar form: stop without tak-

ing any observations if

2 2
o 9y
5 <¢c -8 max (0, 5 - c).
(M+1) (M+2)
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