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BETTING SYSTEMS WHICH MINIMIZE THE PROBABILITY
OF RUIN*

THOMAS S. FERGUSONt

1. Introduction. Games like roulette or craps are unfavorable in that the
odds always favor the house. In such games, whatever your initial fortune,
if you play long enough you are bound to be ruined, i.e., to go broke or
bankrupt. Red dog, and—surprisingly—blackjack as treated by Thorp in
his book Beat the Dealer [5], are examples of favorable games. Loosely
speaking, games are favorable if there occasionally occur favorable situa-
tions. Most of the time, the odds are against the player and he bets lightly.
But when the odds favor him, he bets heavily to more than make up for
the fact that such situations océur rarely. As an example, suppose you are
playing a sequence of games in which the probability that you win is either
4 or .6; in fact, you know that in 80 % of the games, chosen at random,
your win probability is .4, while the remaining 20 % of the time your win
probability is .6. You are allowed to make bets on these games on an even
money basis, after you are told whether your win probability is .4 or .6.
‘When the probability of win is .4, you will bet as small as you can, say the
minimum bet of $1. Where the probability of win is .6, you will bet heavily,
say $10. Table 1 shows that your average or expected winnings in 100
games using such a betting system is $24. This is in spite of the fact that
you will win only about 44 % of the games. If you were to bet $1 on each
game you would lose an average of $12 in every 100 games.

There is an advantage in betting $100 instead of $10 when the probability
of win is .6. Such a bet will increase the average winnings in 100 games to
$384. The drawback is that the player’s resources are in fact limited, and
making large bets in order to get large expected winnings may make the
probability of eventual ruin correspondingly large. In §9 it will be seen
that there is also a reason to bet $8.52 instead of $10 when the odds are
favorable. Such a system of betting will not make you rich very fast; rather,
it will make you rich more surely by minimizing in some sense the prob-
ability that you will eventually be ruined. (In the main models considered
below, if a player is not ruined, his resources tend to infinity.) Betting
heavily in favorable situations increases the expected winnings in favorable
games, but it also increases the fluctuations of the resources. From the
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796 THOMAS S. FERGUSON

TaBLE 1
P(win) % of time ‘ Bet Winnings in 100 games
4 80% $1 —$16
.6 20% $10 +$40
Ezxpected winnings $24

point of view of survival—that is, of not going broke—it is desirable to
keep these fluctuations small. The problem, then, is to strike a balance
between large expected winnings and small fluctuations of the resources.

This paper is concerned with survival in favorable games. The basic
models for favorable games are presented in §2. In §3 related work of other
authors is reviewed. There the main objective is to maximize the expected
utility of the fortune at the end of a fixed number of games. Exhibited is a
large class of utility functions which lead to betting systems in which bets
are proportional to the resources. In §4 a contrasting model is investigated
which leads to betting systems which are independent of the resources.
This model requires, however, the freedom to borrow unlimited amounts
without interest. In §§5, 6, 7, a model is analyzed in which the only possible
bets are $1 and $2, and where the problem is to minimize the probability
of ruin. The special case when the win probabilities are chosen indepen-
dently from a uniform distribution is solved completely, and the betting
system which minimizes the probability of ruin is explicitly exhibited. The
results of this case and several other considerations allow us to arrive at a
reasonable conjecture as to the asymptotic (for large fortunes) form of the
optimal betting system for two very general models. These results are
presented in §§8 and 9. Finally in §10, the results of §§8, 9 are generalized
by discounting the probabilities of future survival.

For a deep and rigorous approach to the problems associated with opti-
mal gambling systems, the book by Dubins and Savage [3] is strongly
recommended.

The author gratefully acknowledges a debt to James MacQueen for long
and helpful discussions on many aspects of this paper, and to Leo Breiman
for suggesting several valuable improvements.

2. The models. The basic model for the favorable games we consider is as
follows. An individual is confronted with a sequence of completely in-
dependent games, Gy, G2, -, in which he may place bets on an even
money basis. Before he places his bet in game G; , he is told the probability
p; that he will win that game. Although he does not know the values of
Di+1, Dire, - - - when game G; is played, he does know that py, p2, ps, - -
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vary as if they were chosen independently from a distribution with known
cumulative distribution function F(p). His fortune (or capital, or resources)
after game G, is denoted by X ; accordingly, X, denotes his initial fortune.
In game G; he may bet any amount between zero and his fortune X; 4
inclusive. His problem is to choose a betting system which is optimal
with respect to some given criterion. In this paper we consider the criteria
of large expected utility of X, (§§3, 4) and of small probability of ruin
§85-10).

A betting system tells the individual exactly how much to bet in each
game. Theoretically, the amount b; designated to be bet in game G; could
depend on various extraneous variables such as his pulse or blood pressure
after previous games; but we consider only those betting systems in which
b; is a function only of X,, p1, X1, P2, - -+, X,-1, p; . The optimal betting
systems {b;} derived later are optimal only within this class. Thus, a betting
system is for us a sequence of measurable functions {b;(z,, p1, 21, P2,

-, &1, Pp;)} with the understanding that if the observed past fortunes

have been 2y, 1, --- ,x;—1 and the observed win probabilities have been
Pr, P2, *** , Pj, then the bet b;(xo, p1, - -+, xj_1, p;) is made. The natural
betting restriction is

(1) 0= bj <.

The basic model is too simple to allow one to speak of the criterion of
survival. Obviously, if the player bets nothing, his probability of ruin is
zero. We consider two general models which are modifications of the basic
model and which force the player to bet if he is to survive. In Model I
there is a fixed cost to play each game, and in Model II there is a positive
minimum bet. Model I, considered in §8, has application to behavioral
science in which the cost may be interpreted as a cost of living. Model II,
considered in §9, is a closer approximation to what actually happens in
blackjack.

In this paper a favorable game is defined to be one in which there exists a
betting system for which the probability of ruin is less than one for some
value x > 0 of the initial fortune X, . Let ¢, denote the infimum over all
choices of betting systems {b;} of the probability of ruin when the initial
fortune is Xo = z

(2) ¢. = inf P{ruin| {b;}, Xo = «}.
()

It is clear that ¢, exists for all . A quite general argument shows that in

Model II,

(3) Qaty é qujl
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for all z and y. This argument is based only on the assumption that a
richer player can make all the bets that a poorer player can. If your fortune
is ¢ + y, you may put away y and play as if your fortune were x. The prob-
ability of losing these  can be made as close as desired to ¢, . But if you
lose these x, you still have y left. The probability of then losing these y can
be made as close as desired to ¢, . The probability of losing your fortune
x + y by this system is as close as desired to ¢.g, ; but you can do at least
this well using an arbitrary betting system so that (3) follows. In Model
I, (3) is replaced by @uty < Qugy—1.)

In particular, inequality (3) shows that the minimum probability of
ruin in favorable games tends to zero at least exponentially fast; for if
¢: < 1, then ¢u.: £ ¢.° — 0 as n — . Inequality (3) also shows that g.
is a nonincreasing function of x.

In §6 a special problem in which the only possible bets are $1 and $2 is
considered and it is shown that in this problem ¢, does tend to zero ex-
ponentially fast. In both Model I and Model I1I, the actual betting system
which minimizes the probability of ruin seems extremely difficult to compute
even in special cases. Instead we conjecture that the probability of ruin
tends to zero exponentially and then derive the asymptotic form of the
optimal betting system. To be specific, we conjecture that in the models
considered

(4) gr " —c as T— ®

for some 0 < r < 1 and some ¢ > 0.

A betting system for which the amount bet b; in game G; depends only
on the present resources X;_; and the present probability of win p; is called
a Markov betting system (since the resulting sequence X,, X;, Xz, - -
becomes a Markov process). For many choices of a criterion on which to
judge betting systems, for example in maximizing the expected utility of
X, or in minimizing the probability of ruin, it is heuristically clear that in
the search for good betting systems attention may be restricted to Markov
betting systems. The author is not aware of any general theorems in the
literature containing such an assertion. Proofs of such general theorems
seem to encounter formidable measure theoretic difficulties. When the
criterion is to minimize the probability of ruin, it would seem that one could
go further and restrict attention to stationary Markov betting systems for
which b;(x;_1, p;) is independent of j (so that Xo, X1,X,, - -+ becomes a
Markov process with stationary transition probabilities). Again, no general
theorem along these lines seems to be available. In §5 a proof of this fact is
given for the particular problem considered there. This proof is rather
general but it does depend on the existence of an optimal first stage betting
function bi(xo, p1), a fact easy to show for the problem in §5. Indeed, this



BETTING SYSTEMS 799

proof should work for Models I and II as well, but showing the existence
of an optimal first stage betting function is much more difficult. This dif-
ficulty may be overcome by showing that g, is a continuous function of
z. A.J. Truelove [6] has proved the continuity of ¢, in Model I in the special
case where F is degenerate. It is possible that his proof may extend to the
general case of Model I and to Model II. In §8 we assume in addition to
the conjecture (4) that ¢, is continuous, and outline the derivation of the
asymptotic form of optimal betting system.

3. Proportional betting systems. In this section we consider the basic
model and try to maximize the utility of our fortune n steps ahead. No
matter what the utility function is, the optimal betting system, if it exists,
will turn out to be Markov. For Markov betting systems, we use the nota-
tion b;(x, p) to represent the amount bet in game G; if X;_; = z and p; = p.

If we are interested only in having large expected resources at the end of
n games, that is, if we want to maximize E(X, | X,), then we would employ
the Markov betting system

_Jx if p> 4,
forj = 1,2, -- -, m. From other points of view, however, this betting system

is not very good. If F(3) < 1 (we take F to be continuous from the right),
then the user of such a betting system is almost certain to be eventually
ruined. The trouble arises from the fact that the utility of money to a
player is not necessarily linear in the amount. It is of interest to consider
a larger class of utility functions of the form

-1

(6) Ua(z) = ,

[44

since it turns out that the betting systems which maximize E(U,(X,) | Xo)
are also quite simple. Kelly [4], Bellman and Kalaba (see [1, Chap. 17
and the references cited on p. 230]) and Breiman [2] have considered the
important special case, corresponding to & = 0, of maximizing E(log X, | Xo).
The Markov betting system

(7) bz, p) = { P D 2>

which we shall refer to as Kelly’s betting system, maximizes E (log X, | Xo).
This betting system and, more generally, those which maximize
E(U.(X,) | Xo) are remarkably simple in that they are proportional sta-
tionary Markov betting systems (i.e., b;(z, p) = =(p)z, with0 < «(p) £ 1).

That a betting system is optimal with respect to some arbitrarily chosen
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utility function is not a very convincing argument in favor of its use. It is
preferable to consider criteria which are more intrinsic. Breiman [2] in a
problem closely related to this one considers two such criteria, one being
minimal expected time to reach a fixed level of resources, and the other
being maximal rate at which the resources get large. For both criteria,
Kelly’s betting system turns out to be asymptotically optimal. That a
particular betting system is to be preferred on the basis of several different
criteria is a strong argument for its use in more general situations. Kelly’s
betting system may be endorsed from this point of view.

4. An analogous model. Let us consider a modified model—the Billie
Sol Estes model—in which the gambler is allowed to bet amounts larger
than his resources, and in which, in fact, his resources are allowed to be
negative. As before, he is to play a sequence of games Gy, G,, --- with
respective probabilities p; , ps, - - - of his winning and with initial resources
Xo . Instead of the betting restriction (1), this time we require only

(8) Oébjx

namely, that he bet nonnegative amounts. Instead of taking utility func-
tions of the form (6), we take them of the form

(9) Vi(z) = —¢™,

where § > 0. These utility functions lead to simple betting systems which
differ in an important respect from the proportional betting systems. The
Markov betting system

2 log P

5 108 T » if p>

1 <
0 1fp=2,

)

(10) b:i(xr P) =

| =t DO} =

forj =1,2,---,n, maximizes E(Vy(X,) | Xo). Thisis a stationary Markov
betting system and, far from being a proportional betting system, it is
independent of . You don’t have to keep track of how much your resources
are to be able to tell how much you are going to bet!

The proof that the betting system (10) maximizes E(Ve(X,) | Xo) is
essentially the same as that given by Bellman and Kalaba (see [1, pp. 223—
224]) of the fact that Kelly’s betting system maximizes E(Uy(X,) | Xo).
The idea of this proof is as follows. It is easily checked that the b,(z, p) of
(10) maximizes E(Vo(X,) | Xn_1), and that, luckily, the maximum value
turns out to be

max E(Ve(X,) | Xna) = —re -1,
bn
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where
3 1
(11) r=[ ar) + j; 2v/p(1 = p) dF (p).

On the previous step, maximizing E(V(X,) | X._2) is equivalent to maxi-
mizing rE(Ve(X,_1) | Xn_2), which not only gives for b,_i(z, p) the same
solution (10), but also gives the maximum value of E(Vy4(X,) | Xu-s)
as 7"V4(Xn—2). This obviously may be continued to prove (10) for j down
to 1. (Actually, as Bellman and Kalaba point out, it is not necessary that
the p; be chosen independently or even randomly. In fact, even if the
gambler is told the exact values of the p; before he starts to play, the betting
system (10) is still optimal!)

(Another side remark: A closer analogue to the utility functions U, of
(3) would be the utility functions, defined for all real values of 6, V¢*(x)
= (1 — e™)/gfor6 £ 0, and Vo*(z) = z. For 6 > 0, these utility func-
tions are equivalent to those of (9). An optimal betting system generalizing
(10) may be worked through provided the betting restriction (8) is re-
placed by ¢1 £ b; £ ¢;, with ¢ and ¢, independent of z.)

The main reason we discussed this model is that analogous to the results
of Breiman for Kelly’s betting system in the basic model, we claim there is
a more intrinsic criterion than the arbitrary utility function (9) for which
the betting system (10) is asymptotically optimal for some value of 6.
That criterion is survival. In Models I and II this claim is based on the
conjecture (4) that the probability of ruin tends to zero exponentially
as the fortune tends to infinity, so that the utility function (9) will be
approximately valid for some value of 6 when the fortune is large.

6. A discrete model. In this section, we make the assumptions of the
basic model with the additional restriction that the only allowable bets
are $1 and $2. With this restriction, we may as well assume also that the
resources z are an integer number of dollars.

The betting system giving the largest expected gain per play is the
stationary Markov betting system b; = 1if p; < 3 and b; = 2if p; > 3,
for X;_; = ¢ = 2. (If X;_1 = 1, then b; = 1, since bets larger than the
resources are forbidden.) This maximum expected gain for resources
T = 2is

3 1
[@p—vare) +2[ @p-1dre)

i
= 2(2u — 1) +f0 (1 — 2p) dF (p),
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where p is the first moment of the distribution F. If this expected gain is
not positive, then X,, X1, Xs, -- - forms a lower semimartingale bounded
by zero, so that with probability one, X, converges to some random variable
X, . But X, does not converge unless it is zero from some point on. Hence,
the probability of eventual ruin is one. On the other hand, if this expected
gain is positive, then this stationary Markov betting system itself gives its
user a positive probability of survival, whatever his initial resources (i.e.,
¢1 < 1). Hence we have the following.

LemMmA 1. In order that the game be favorable it is necessary and sufficient
that

3
(12) 2% — 1) +f0 (1 — 2p) dF(p) > 0.

This condition is obviously satisfied if, for example, p > 3.

We present a brief lemma which states that no matter what betting sys-
tem is used, the probability is one that either X, is zero from some point
on or X, — . This implies that minimizing the probability of ruin is the
same as maximizing the probability that the fortune tends to infinity.

LemMa 2. For every finite t, P{0 < X, < tio.} = 0 (io. = infinitely
often).

Proof. The proof we give depends only on the fact that thereis ane, > 0
such that for all betting systems and for all n and j < ¢, P{X,+:=0|X, = j}
> ¢ . In our specific problem, we may take ¢, = P{loss ¢ consecutive times

betting $1 each time} = 6°, where § = f (1 — p) dF(p). If F is degenerate

at 1, the lemma is obvious; otherwise, 6 > 0.

Let N1 be the first n such that 0 < X, < ¢; if no such n exists, let Ny =
+ . By induction, define N, as the first n larger than N; 4 ¢ such that
0 < X, < tprovided N; < « and such an n exists; otherwise define
Nipas + . Thesets {N; < «} are decreasing in 7 to the limit N{N; < o}
= {0 < X, < tio.} asi— «.But,

P{Nj1 < ©} = P{Njy1 < © | N; < o} P{N; < o}
t—1

= 2 P{Nin < o | Xy, = jiP{Xy; = j|Ni < «}P{N: < =}

< (1 — &)P{N: < »}.

Hence, P{Nij1 < ©} < (1 — ¢)°P{N1 < o} — 0 as i — o, completing
the proof.

We shall suppose from now on that the condition of Lemma 1 is satisfied.
We first derive the equation which an optimal betting system and asso-
ciated probabilities of ruin must satisfy. This equation is the fundamental
functional equation whose use is championed by R. Bellman.
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LeEmMA 3. For the g, defined by (2),

(13) ¢ = f { ilblf [pgers + (1 — p)g—sl} dF (p),

where the infimum s taken over the functions b(x, p) which take only those
values 1 or 2.

Proof. That g, is less than or equal to the integral on the right hand side
is clear since this integral is the infimum of the probability of ruin given
Xo = z over all {b;} for which b, , bs, - -+ do not depend on z, and p; .

To show the reverse inequality, let {b;'} be e-optimal in the sense that

P{ruin | {b;7, Xo = 2} < ¢.(1 + ¢).
Note that for all o, p, and z;,
P{ruin | {b;}, Xo =z, ;1 = p, X1 = 1} = ¢, .
Then

f {igf [pgets + (1 — p) =]} dF (p)

[pgero; + (1 — D) gosg] dF (p)

< P{ruin | {b;}, Xo =2} £ ¢.(1 4+ ¢)

for all x, completing the proof.

It is clear for the problem under consideration that there exists a betting
function b*(z, p) which minimlzes PQorr + (1 — p)ges» , where b* takes
only the values 1 or 2. Let {b;*} be that stationary Markov betting system
such that b,* = b* for all j, and let ¢,* = P{ruin | {b;*}, X, = z}. It is our
objective to show that ¢, = ¢.*, thus showing that {b;*} is an optimal
betting system.

Let ¢ > 0 and choose a betting system {b;} such that

¢-* = Pfruin | {b;%}, Xo = z} = ¢.(1 + ¢)

for all z. Let {b,"} be that bettlng system which uses b* n times followed

by {b;}, ie., forj £ n, b,™ = b;*, and for j > n, b;” = bj—, in the sense
that
0™ (20, Pry oo+, Ticay Pi) = bia(Zny Pavr, =5 Tty Pi)-
Let ¢ = P{ruin|{5;™}, Xo = z}.
LEMMA 4. " = (1 + ).

Proof. The proof is by induction. Since {b;”} = {b,%], the lemma is
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valid for n = 0. Suppose it is true for n = k. Then since {b,**"}is b*
followed by {b;*},

ql(lc+1) — /[pqéﬁ-)b' + (1 —p) ¢Bp] dF (p)

IIA

[ e + (1 = p) gesel dF(p) (14 )

(1 + €,

completing the induction.
THEOREM 1.

]

*

gz = Qz -
Proof. That q, < ¢.* is obvious from the definition of ¢, . To show the
reverse inequality, note that P{X, = 0| {b;*}, X, = «} is nondecreasing in
n and converges to ¢,* as n — . Consequently, for n sufficiently large,

¢"(1 — €) < P{X, = 0] {b,"}, Xo = x}
= P{X. = 0] {6}, Xo = z}
< ¢.™ < ¢.(1 + ).

The validity of this inequality for all ¢ > 0 implies ¢.;* < ¢., completing
the proof.

To find an optimal betting system in terms of ¢, is now an easy matter.
Since b* is that number, one or two, which minimizes p goyer + (1 — p) g,
it is optimal to bet 1 if p gop1 + (1 — DP)gee1 £ P Goye + (1 — D)2,
and to bet 2 otherwise. Thus, when the resources are x, and the probability
of win is p, it is optimal to bet 1 if p < ¢, and 2 if p > ¢,, where ¢; = 1
(one cannot bet more than one has) and

1

_ (q::—2 b q:—l) _ . -

(14) G (Qz—z - q:c—l) + (Qz+1 - q:c+2) ’ v 2’ 3,
(note that ¢o = 1). Since the game is assumed favorable, (3) implies that
0<ce<l,forx = 2

To complete the solution, there still remains the problem of describing a
method whereby the ruin probabilities ¢, may be computed. Equation (13)
provides a set of equations to be satisfied by the ¢, . To write these equations
in more convenient form we introduce the notation

w(y) = f: p dF (p).

so that u(1) = u, the mean of the distribution F. Recall that F is taken to be
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continuous from the right and so u(y) is also continuous from the right

Y Yy .
(since f pdF(p) = f p dF (p)). Simple manipulations reduce (13) to
0 0

Q= Qo2+ (1 — w)2 — F(cz) (o2 — Gz1)
+ I"'(cz)(q::—2 - qz—l + q::+l - q:o+2)

forx = 2, 3, ---, where ¢, satisfies (14). This set of equations is to be
solved for the ¢, subject to the boundary conditions: (a) ¢, > ¢4 for all
z, (b) ¢t — pgz =1 — p, (¢) o = 1, and (d) lim,., g- = 0. Equation (15)
is a fourth order recurrence relation; given ¢, 2, ¢s—1, ¢z, and @41, one
can solve for ¢.,». By two successive changes of variable, this can be
reduced to a second order recurrence relation. First, let

(15)

(16) 0 = Qa1 — s, z=1,2 -
Equations (15) become
p(cz) (e + azy2) — F(cz)az

— (aea + oz + o1 + ea2)p + (a1 + @) =0

forx = 2,3, -+, where ¢; = az-1/(az_1 + az42), subject to the boundary
conditions: (a) az > 0 for all z, (b) (1 — p)ay = pas, and (¢) D1 az = 1.
Second, let

(17)

(18) g, = &= r=1,2 .

Oy
Equations (17) become
l‘(cﬂ?)(l + .Bz—l B:c Bx+1) + (1 + Bx—l)
= F(cz) + (1 4 Ba1 + Bz-1 Bz + Bo1 Be Botr)it

forz =2,3---, where ¢; = (1 4 Bo_1B:zBz41)"" subject to the boundary
conditions: (a) 8, > 0 and (b) B =1 — .

To solve (19) subject to the stated boundary conditions is indeed a
difficult problem. One possible approach is illustrated in the next section
where F is the uniform distribution over the interval [0, 1]. It seems likely,
however, that it is more feasible in general to approximate the ¢, directly
by the minimum probability of being ruined in the first n steps when the
initial resources are x. This corresponds to a dynamic programming problem,
refinements of which have been carried out by A. J. Truelove [6] in a special
case of the more complex Model I.

(19)

6. A special case, completely solved. Here, we treat the model of the
previous section under the assumption that F is the uniform distribution
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on the interval [0, 1]. It is easily checked that condition (12) is satisfied so
that the game is indeed favorable. Equations (19) reduce to

Bz—1 ﬁzz ﬁ:+l = (1 - ﬁx) (1 + Be1 B ﬁzal)

forz = 2, 3, ---, subject to the boundary conditions (a) 8, > 0 and (b)
B1 = 1. This quadratic equation in B,+; has as its only positive solution
5o ()
20 o1 = 14+ (14 —nrr——
( ) ﬁ i Bz 61—1(1 - ﬁz)
forx =2, 3,---. Given 81 = 1 and an arbitrary 8. , we may compute
B3, Bs, --- successively from (20). The problem is to choose a value of

B: for which the boundary condition (a) is satisfied. We know from the
problem which led to (20) that there exists at least one such value of 3, .
It will be shown below that there exists at most one such value. For this
purpose, the following lemmas prove useful. Let

(21) fen) =1 (14 4/14, )

so that By = f(Br_1, Br). We will need later the two partial derivatives,

) o 1 4 \*
(%f(x,y) =—x Yy (1+m) )

5 1 4 %(x+2)(1—y)+2>

which show that f(x, y) is a decreasing function of both  and ¥ in the
interval 0 < 2 < 1,0 < y < 1.
LemMma 5. (i) B > 1/A/2 forall x = 1.
(i) B, < 2(A/2 — 1) forallz = 2
Proof. (i) First note that (19) automatically implies that all 8, < 1
for = 2. Suppose contrary to (i) that 8. < 1/4/2 for some . Then

Betr = f(Bom1,B:) = (1 7) =1
contradiction. _
(ii) Suppose to the contrary that 8, > 2(4/2 — 1) for some z = 2.
Then

AB::+1 f(ﬁz—l ’ ﬂz) = f('\/— 2('\/2 - 1)>

contradicting (i), and completing the proof._ R
LEMMA 6. For 1/A/2 £ 2 £ land1/A/2 £y £ 2(\/2 — 1).

V32’
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M Sy > =5 ed () Zflny) < -2

4 dy
Proof. 4
O 2wz -t (14 if—y)
_} _ _ —

. 3 1 LY
(ii) @f(x,y) YoV |:1+< +;,.(—1*:—yj)
(%)] < (same evaluated at z = 1 and y = 1/4/2)
_ 3142242
—— g < =2,

The following theorem shows that the recurrence relation (20) is not
stable; that is, a small error in 8, will lead to a larger error in 8;, and an
even larger error in B4, ete.

THEOREM 2. Put 81 = 1 and let B35 ) Ba, - - be functions of B through the

recurrence relation (19). Then, if 1/A/2 < By < 2(A/2 — 1) for2 < k < z,
d:B:H’l 3 _

dﬂz < § 5 xr = 2, 3, .

Proof. By induction: it is obviously valid for z = 2 since dB;/dB.
= 9f (B ,,32)/6[32< —2 < —3/2. Now suppose it is valid for x < N; then,

dBx+1 _ dﬁn—l 52 . _ 3
dBw a.BN— f(uBN -1, Bx) < 2

43 2’
completing the proof.

This theorem serves two purposes. First, it shows that there is at most
one solution to (20) subject to conditions (a) and (b). For, if 8,* = 1,
B.*, Bs*, - - - is a solution, then a choice of B; = B2* + ¢, ¢ > 0, will lead to
Bs < Bs* — 36 B > B + (B)% B < 8" — ()%, ete. (similarly,
Ba= B — ¢ > 0,will lead to Bs > Bs* 4 f¢, By < B — (2)%, ete.) until
eventually the assertion of Lemma 5 that 1/4/2 < 8, < 2(v/2 — 1) is
violated.

Second, it is the basis of a simple algorithm for approximating the solution
to (20) subject to conditions (a) and (b) as closely as desired. The theorem
implies that the computed values of the 3, will be alternatively above and
below their true values. A trial choice of 8, will lead to 8s, B, - -+ until
1/4/2 < B. < 2(\/2 — 1) is first violated at z = some N. If N is even and

f(ﬁN I;aBN)
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TABLE 2
B = 1.000000
B2 = .768382
Bs = .794936
Bs = .791522
Bs = .791955
Bs = .791900
B; = .791908
Bs = .791906

By < 1/4/2, or if N is odd and 8y = 2(1/2 - 1), then B; was chosen too
small. Similarly, if N is even and 8y = 2(1/2 — 1), or if N is odd and
By < 1/4/2, then B, was chosen too large. Hence, by continually bisecting
values of 8; known to be too small and too large, a sequence of values of 8.
may be obtained which converges exponentially to the true value of B, .
(Simple improvements of this method will converge much faster—about as
fast as Newton’s method converges to the root of an equation—but a de-
scription of these seem out of place here.)

On the basis of some such method, the first few values of the 8, were com-
pueed to six decimals accuracy, and are given in Table 2.

Using the 8, , we must compute the values of the a, from (18) subject to
condition (¢): )1 a, = 1. It is clear that a,y1 = a1 |58, where oy is
chosen so that condition (c) is satisfied. But )y a, involves knowledge of
the infinite sequence of the 8., not just the first few terms. We will show
that the rest of the 8, may well be approximated to six decimals by the value
of Bs . We will show, in fact, that the 8. converge to a constant.

If the 8, do converge to a constant r, then it is easy to find the value of .
The function f(z, y) of (21) is clearly continuous for (z, y) within the unit
square, so that r = f(r, r). Roots of the equation are also roots of the fifth
degree equation * 4 * — #* 4+ r — 1 = 0. There is one and only one root
of this equation in the unit interval [0, 1], this being r = .7919064293 to ten
decimals. We now demonstrate that the 8. do indeed converge to r, the
root of the equation r = f(r, r). We first establish the fact, indicated by
Table 2, that the true values of the 3, lie alternatively above and below r.

LEMMA 7. If B, < 1, then Bopr > 7. If B2 > 7, then By < 7.

Proof. Suppose 8, < r. We will show that a choice of 8:41 = r is too small.
If .41 = r, then all succeeding B.i2, Bz+3, - -+ must equal r also since
f(r, r) = r and there is at most one solution. But B2 = f(Bs, Bzt1)
> f(r,r) = r.Hence, B2, are too large, and B.+2.1 are too small. Hence, the
true value of 8,41 must be greater than r. Similarly, if 8, > 7.

THEOREM 3.

IT~BZ+I| éAIT_BZI
where A = £/3/4 < 1.
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TABLE 3

x az gz ¢z

1 .17536 .82464 1.00000
2 .17536 .64929 .62080
3 .13474 .51454 .67409
4 .10711 .40743 .66742
5 .08478 .32266 .66827
6 .06714 .25551 .66816
7 .05317 .20234 .66818
8 .04211 .16023 .66817

Proof. Suppose B, < r and Bzy1 > r + A(r — B:). Then 8, > r

— A7 (Bopr — 1), s0 that Bore = f(Bs, Ber1) < f(r — A7 (B — 1),
r + (Bz41 — 7)). But since

%f(r — Az, r42) = — A fu(r — A 2,1 + 2)
+ fulr — Az, r +2) < A 2_ 2= —(2— A),

and f(r, r) = r, it must be that 8,42 <7 — (2 — A)(Bz41 — 7). Hence, 842
must be further away from r than 8,41 by a factor of (2 — A) > 1. In-
ductively, Bz1x+1 is also further away from r than 8.« by a factor of 2 — A,
It is clear then that 8., is too small for even k and too large for odd k. Thus
Bz+1 was chosen too large; i.e., Bzr1 — 7 > A(r — B2).

A similar proof works if 8, > r.

This theorem shows not only that the 8, converge to r, but that the con-
vergence is monotone in absolute value and at an exponential rate. Thus
we may use (33 as an approximation good to six decimals of 8y, Bu, ete.
Using Table 2, the values of o, ¢, and ¢, are now readily computed.

From Table 3 it may be guessed that ¢, tends to a constant. This is easily
seen since ¢; = (1 4 By Bz Be1) " — (1 + *)™ = 6681736 - - - . Thus, for
x large the optimal strategy is to bet $2 if p > .6681736 - - - and to bet $1 if
p < .6681736 - -- . Furthermore, the actual optimal strategy is seen in
Table 3 to converge very rapidly to this one.

It is interesting to contrast this betting system with the one which for
z = $2 bets $2 if p > % and $1 if p < . The probabilities of ruin tend to
zero exponentially at rate .812 (rather than .792) and the first few values of
g are ¢ = .837, o = .675, ¢; = .549, and ¢, = .446.

7. Asymptotic solution for general F. Presumably, some method like
that of the previous section for approximating the solution will work in
the general case where F satisfies the condition of Lemma 1. It is easy,
however, to get an approximation to the optimal betting system for large
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resources in the general case, provided the conjecture (4) on the exponen-
tial rate of convergence of the probability of ruin to zero is valid. In the
present case, we employ the weaker conjecture: that for some 0 < r < 1,

(22) B.— 7T as xT— o,
Under this condition,
(23) &= 1+ as z— o,

and since F(c,) — ¢o 'w(cs) is a continuous function of ¢, (though neither
of the terms separately is continuous), (19) converges to

F(1 4™ — @+ (@ + )7
+Q+r+7 4+ — (1 4+7r) =0.

We would like to show there is a unique root r of this equation, 0 < r < 1,
since then, by finding this root, we would obtain not only the exponential
rate of convergence of the probability of ruin to zero, but also the approxi-
mate optimal betting system for large resources by (23).

Denoting the left side of (24) by g(r), we have g(0) = 0Oand g(1) = F(3)
— 2u(3) + 4u — 2 > 0, since we are assuming that F satisfies (12). The
derivative of g with respect to r exists at all points such that F does not give
positive mass to (1 4 +*)™, and

(24)

1
d =3[ paFp) + (1 -2 s -1,
(1473)~1

so that ¢'(0) = u — 1 < 0. It is apparent that ¢'(r) is an increasing func-
tion of r, and that g(r) is a continuous function of r. This implies that g(r) is
convex, and hence has a unique root between zero and one.

In summary, if the conjecture (22) is valid, then r may be found from
(24), and for large resources, the optimal betting system is (approximately)
to bet $1if p < (1 4+ 7*) " and to bet $2if p > (1 + *) 7.

8. Model 1. The general problem for Model I is investigated in this
section by a method analogous to that used in the preceding section. It is
useful to write ¢(z) instead of ¢, to represent the minimal probability of
ruin when the resources are z (equation (2)).

Recall that in Model I, the gambler pays one unit of resources to play
each game. For the sake of convenience, X;_; is taken to represent his re-
sources after having paid the fee to play game G; forj = 1,2, --- . In this
way the betting restriction is still

(1) 0= bj = Tj—1

There is a very simple necessary and sufficient condition that a game of
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Model I be favorable, namely, that F give positive mass to the half-open
interval (%, 1]. For if so, there exists a number M such that the betting
function

0 if p=3
b(”’p)={M if z>;,

has expected gain greater than one. After the cost of living of one unit is
deducted, the net expected gain is still positive. From any initial fortune
Xo > 1, there is a positive probability that the gambler will eventually have
fortune greater than M ; and then there is a further positive probability that
this fortune will never get below M, provided he uses the above betting
function thereafter. The condition that F (%) < 1 is also necessary and suffi-
cient that a game of Model II be favorable.

The Bellman functional equation corresponding to (13) for Model I
problems is

(25) 0@) = [ inf ols,p,5) aF(p),

where
(26)  o(z,p,0) =pglx+b—1)4+ (1 —p) glz—b—1)

represents the infimum probability of ruin given X, = z, p, = p, and a bet
b is made in game G, . (For negative z, g(z) is defined to be one.) If it is
true that g(z) is a continuous function of z (a hypothesis discussed in
§2), then there clearly exists a function b*(z, p) such that o(z, p, b*)
= info<p <o ¢(2, P, b). With the existence of such a function, the analysis
carried out in §5 can be modified to show that the stationary Markov betting
system which uses b*(z, p) at each stage of the betting is optimal.

We shall now demonstrate how the conjecture that, for some 0 < r < 1
and ¢ > 0,

(4) gz)r*—c as z— ®

may be used to find the value of r, and the limit of the optimal betting
function b*(z, p) as x — .

Let ¢ > 0 and find a number z. , whose existence is entailed by the con-
jecture, such that z > z. implies | ¢(2)r " — ¢ | < e For large z, ¢(z, p, b)
may be approximated by the function ¢+*'g(p, b), where

(27) 9(p,b) = pr™" + (1 — p)r™,

a strictly convex function of b for each fixed p. In fact, provided
z—b—1> =z,

z—b—1

le(z, p, b) — " g(p, b)| < e
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For fixed p, g(p, b) has a unique minimum over nonnegative values of b at
the point b = b°(p), analogous to (10),

0 ifp < 3§,
1 —
(p) =< log » 14
b ; 1
log 72 itp >4

the minimum value there being

0 1 i
g(p,b(P))={2\/m_—p) if p>

Let 6 be a small positive number and find a number p;, 3 < p; < 1,
so that F gives mass less than & to the open interval (ps, 1). Let 6 = b°(p;).
Then, for p < p;,

(28) |, inf o(2,p,0) — a™g(p, B'(p))] < &7,
0<b<20

and the infimum of ¢(z, p, b) is assumed at some point b*(z, p) for which
(29) |6%(z, p) = B'(p)| < n(a™),
where n(e) is some function for which (i) n(e) — 0 as e — 0, and (ii) for b
such that | b — b°(p)| > n(e), we have g(p, b) > g(p, b’ (p)) + e

We will show that (28) remains valid for p < p; if the infimum is taken
over theset0 = b < z.Infact,if 20 < b <2 —x. — 1,
<p(.’L', D, b) > Tz_l(Cg(p7 b) - er—b)

z " (cg(p, 26) — @) 2 " (cg(p, V() + &),

provided e is sufficiently small. Also, for values of b in the interval
z—z.—1=2b=rz,

o(z,p,0) 2 (1 — plg(ze) > " (cg(p, b'(p)) + &™),

provided z is sufficiently large (with e fixed). This proves for p < p;, 8
fixed, that

| inf o(z, p,b) — " g(p, bo(p))l < g
0sbge
when e is sufficiently small and z sufficiently large (depending on ¢), and

that the infimum value of ¢(z, p, b) is achieved at a point b*(z, p) which
satisfies (29). In particular, letting £ — o« and then ¢ — 0 proves that

b*(z, p) = '(p) as z— w

for all p < ps . Since 8 is arbitrary and since b*(z, 1) = ¢ — » = b(1),
this is valid for all p = 1.
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In order to evaluate r, note that

o — er”? ll g(p, b°(p)) dF (p) ’

IIA

| " — (@) | + ’q(x) - cr"_‘fo 9(p, ¥'(p)) dF (p) I
s+ [T ] int ola,p,b) — o glp, ¥ (p)) | dF ()

+ f (o(@,2,0) + o g(p, 1 3))) dF(p)

e + e + 8(2¢ + €))

for z sufficiently large. Hence,

IIA

r— fo g(p, b’(p)) dF (p) | S cMe + a4 8(2¢ + ),

so that letting ¢ — 0 and then § — 0 yields

r =fo g9(p,b°(p)) dF (p)
(30) 1
=F(}) + 2 L vp(1 — p) dF (p),

exactly (11).
As an illustration of these results, consider the particular case when F(p)

is degenerate at some number p, > 1. In such a case,
r=24p(1 — po),
log 1= m

0 _ y4)
PP = Ioglnd — o)
For example, when p, = 24, we find r = 943 - - - and °(24) = $5.89. Thus,
a rich man who pays a dollar a day to live, who receives each day an op-
portunity to make an even money wager on a gamble affording him prob-
ability 24 of success, and who is interested only in survival, should bet ap-
proximately $5.89 each day. It is interesting to note what happens for po
close to one-half or one: as po — 1, b°(po) — 1, and as po — %, b’ (po) — .
There are certain implications of a general nature describable in terms
of individual behavior, which are worthwhile pointing out. In first study-
ing these problems, the author was struck by the fact that in distinction
with Kelly’s betting system, the systems optimal for survival do not have
bets which increase without bound as the resources increase without bound;
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in other words, the optimal betting system for survival is quite conserva-
tive.

ImpricaTION 1. If you have large resources and are interested only in sur-
vival, be conservative.

The last sentence of the third paragraph above is also worth stating as a
general implication.

ImpricATION 2. For rich individuals whose only interest vs survival, those
obtaining less favorable opportunities should be less conservative.

It might be suspected that these results show that nobody is interested
only in survival since nobody acts like this. The more resources a person
gets, the more he sinks into the stock market. However, as a person’s
resources increase, so does his standard of living, and hence so will the
bets he has to make to survive. To treat problems of this sort, the model
would have to be modified.

A. J. Truelove has computed b*(z, po) in [6] for the above problem when
F(p) is degenerate at po = 24. His results seem to bear out the conjecture
that b™(z, po) — b°(po) = $5.89 as x — . One of the surprising results of
his investigation is that for £ < xz,, where z, is approximately $9,
b*(z, po) = x. At o, b*(z, po) is discontinuous and drops to about $4.50.

ImpLICATION 3. If you are poor and interested only in survival, be bold.

9. Model II. Instead of showing in detail how the conjecture (4) entails
the asymptotic solution of the problem in Model II, we employ a more
heuristic method to arrive at the solution.

Recall that Model IT differs from the basic model only in that the betting
restriction is

1 ébj_<_x,-_1.

The Bellman functional equation corresponding to (25) for Model IT
problems is

o@) = [ int oz, p,5) aF(p),
where o
e(z,p, b) = pg(z + b) + (1 — p)g(z — b)

represents the infimum probability of ruin given that X, = z, p» = p, and
the bet b is made in game G; . Again assuming ¢, is continuous, there exists
a function b*(z, p) satisfying 1 < b* < 2, for which o(z, p, b*)
= infics<.0(2, p, b). And again we may conclude that the stationary
Markov betting system which uses b*(z, p) at each stage is optimal.
Using the conjecture (4) that ¢(z) ~ ¢, we find that ¢(z, p, b)
~ ¢rg(p, b), where g(p, b) is defined by (27). The fundamental equation
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for large z is approximately
1
(31) 1= [ inf g(p,b) dF(p).
0 1<b
The infimum of g(p, b) for b = 1 is achieved at the point

=157
b(P)=maX 1"“@5— )

so that (31) is

1= l g(p, b°(p)) dF (p),

which may be used to evaluate r. Equivalently, one may solve for =, the
point at which 1 = log ((1 — =)/x)/log . Thus,

(32) 1= fo Clor + (1 — p)y Y dF(p) + [ 2vaT =) dFp),

where r = 4/ (1 — ) /. The right side of this equation can be shown to be
an increasing function of , to take a value less than one at = = 3, to tend to
infinity as = tends to one, and — surprisingly—to be continuous (surprising,
because neither of the terms on the right side of (32) need be continuous in
x separately). Therefore, there exists a unique value of = between 3 and 1
at which (32) is satisfied, and for this value mo of =, the optimal betting
system is

1 ifp <m,
v’(p) = 4log (1 — p)/p)
log((1 — mo)/mo) if p=m.

Certain special cases are of interest:

(i) If F gives mass one to a point p; > %, then one can show that o = p1,
so that b°(p1) = 1; the rich player should always bet 1, the minimum bet.
(ii) If F gives mass % to each of p; > % and ¢1 = 1 — p1, then one can show
that g1 < po < D1, so that (32) becomes

1=3%gr+ 1 — a1+ VoA = p),

an equation which defines the value of r. The asymptotically optimal bet at
D1 iS

b(p) = ——PL .
p1) g
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This is an increasing function of p; , with
b(pr) > 1 4+ /2 =2414--- as p —
b(%) = 2.455 - -,
b(p) — 2 ol

(iii) The introductory example. If F gives mass .2 to p1 = .6, and mass .8
to g1 = 4, thenr = .9765 - -- and b(p1) = $8.52.

10. Discounted survival. In the previous two sections, betting systems
were judged on the basis of survival forever. In this section we note briefly
the consequences of using discounted future survival as the criterion. Con-
sider a fixed betting system b = {b;} and let ¢; = ¢i(x, b) be the probability
of being ruined by the play of the ¢th game, using betting system b when
the initial fortune is X, = 2. We suppose that for some number p, 0 < p < 1,
the present value to the gambler of playing the ith game is p* . Then, the
present value of a history which is ruined by the 7th game is 1 + p+ - --
+ 7' = (1 — p")/(1 — p), and the present value of survival forever is
1/(1 — p). Hence, the value of a betting system b when the initial fortune
is Xo = zis

(1= 0™ 2 g 1)1 = 6) + (L= )71 = T ala, b))

(33) = (1 - p)"(1 = G(p; 2, b)),

where G is the probability generating function of the time 7' at which ruin
takes place

(3) @iz b) = EG | Xo=2b) = 2 0l b’

Rather than think of (33) as a class of utility functions, it is preferable to
take (34) as a class of loss functions, since, when p = 1, G represents the
probability of ruin, so that (34) may be considered as a generalization of
the loss function used in the preceding sections.

It is valuable to consider two other interpretations of the criterion of dis-
counted survival. Suppose that independent of what happens in the se-
quence of games being played, there is a fixed probability, 1 — p, not de-
pending on z, that between games G; and Gy;1 the gambler will separate
from the system. Such a separation may be thought of as death, social
revolution, etc. In other words, letting 7™ represent the time at which
separation takes place, we suppose that 7* and T are independent and that
P{i < T* <i+1} = (1 — p)p’. Since P{T < T*} = E{P{T < T*| T}}
= E{p'}, G represents the probability that the gambler is ruined before he
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separates from the system. In choosing b to minimize G(p; z, b), we are
thus minimizing the probability of being ruined before separation. On the
other hand, if we consider separation and ruin both as death, and suppose
that P{T* = 5 + 1} = (1 — p)p’ with T independent of 7T, then since

E{min (T, T*)} = E{E{min (T, T*)| T}}

T . ® i 1— Ep”
= E{Zi(l — )T+ T2 (1 —p)pf l} = —I—-L,

T T+1 —-»p
we see that (33) represents the expected length of life. In choosing b to
minimize G(p; z, b), we are thus maximizing the expected length of life.
It should be noted that both these interpretations, minimum probability of
ruin before separation and maximum expected length of life, are valid even
if the game is not favorable. The results of this section apply to nonfavor-
able games as well.

Let

g,(x) = inf G(p; z, b)
b

so that ¢i(z) is the g(x) of (2). One can derive as before under the same
general conjectures (that g,(z) ~ ¢,r,” for some 0 < r, < 1 and ¢, > 0, that
attention may be restricted to stationary strategies, and that ¢,(x) is
continuous in z) the asymptotic value of the optimal strategy.
First we consider Model I.The equation analogous to (26) is found to be
1

g,(z) = pf inf [pg,(z + b — 1) 4+ (1 — p)g,(z — b — 1)1 dF (p),

0 0<bx=z
Boldly substituting c,r,” for ¢,(x) in this equation, we find the asymp-
totically optimal betting system to be
0 ifp <
1-»
p

W=

b,(p) =1 log ifp >

[

log r,?

where 7, this time satisfies the equation, analogous to (30),

r, = pF (%) + 2p£ Vp(1 — p) dF (p).

Since r, = pry and b,(p) = bi(p) log r1/(log p + log 1), we see that the
asymptotically optimal betting system in the discounted case is a constant
proportion of the betting system in the nondiscounted case. As an example,
suppose that F is degenerate at py = 24, and that p = .9;then r, = .849 and
b,(po) = $2.11. It is reasonable that this should be a smaller bet than the
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$5.89 which is asymptotically optimal when p = 1, because when p = .9
survival in the distant future is not as important to the bettor. The more
discounted the future, the more conservative the betting system.

The results for Model IT are completely analogous. The fundamental
equation is

g (z) = pfo lsirbl; [ g(x +b) + (1 — p) ¢.(x — b)] dF (p)

and the asymptotically optimal betting system is

1—p
1 A
b(p) = max(1, 2 Tp |,

log r,?

where 7, satisfies the equation analogous to (32),
Ty 1
35) o7 = [ o+ (= prdFG) + [ 2P pdF ),

with »,, = (1 — =,)/x, . The statements used in §9 to show that a root of
(32) exists, may also be used to show that a root of (35) exists, and that
7, is a decreasing function of p. As a numerical illustration, consider the
introductory example with p = .9. For this value of p, r, = .695 --- , and
the asymptotically optimal betting system is to bet $1 regardless of the
value of p. It is interesting to note that such a betting system does not give
a positive probability of survival.

We remark in conclusion that the results of these last three sections can
be generalized to many other models, including the mixture of Models I and
II wherein there is a minimum bet and a cost of living, and including models
wherein there is also a maximum bet.
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