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Abstract. The simple two-person poker model, known as Basic Endgame, may be
described as follows. With a certain probability known to both players, Player I is dealt
a hand which is a sure winner. If it is not a sure winner, then Player II is sure to have a
better hand. Player I may either check, in which case the better hand wins the antes, or
bet. If Player I bets, Player II may either fold, conceeding the antes to Player I, or call,
in which case the better hand wins the antes plus the bets. This model is reviewed and
extended in several ways. First, several rounds of betting are allowed before the hands
are compared. Optimal choice of the sizes of the bets are described. Second, Player II
may be given some hidden information concerning the probability that Player I has a sure
winner. This information is given through the cards Player II receives. Third, the model
is extended to the case where the hand Player I receives only indicates the probability it
is a winner. This allows for situations in which cards still to be dealt may influence the
outcome.

Introduction.

In this investigation, we treat from a game-theoretic point of view several situations
that occur in the game of poker. The analysis of models of poker has a long and distin-
guished existence in the game theory literature. Chapter 5 of the book of Émile Borel,
Applications aux jeux de hasard (1938), and Chapter 19 of the seminal book on game
theory by von Neumann and Morgenstern (1944) are devoted to the topic. In the 1950’s,
others developed further certain aspects of modeling poker. Kuhn (1950) treats three
card poker. Nash and Shapley (1950) treat a three person poker model. Bellman and
Blackwell (1949), Bellman (1952), Gillies, Mayberry and von Neumann (1953), Karlin and
Restrepo (1957), Goldman and Stone (1960ab), and Pruitt (1961) extend various aspects
of the poker models of Borel and of von Neumann-Morgenstern further. Chapter 9 of the
textbook of Karlin (1959) summarizes this development. For a more recent treatment of
the models of Borel and von Neumann, see Ferguson and Ferguson (2003) and Ferguson,
Ferguson and Gawargy (2007).

Generally, the aim of such research is to analyze a simplified model of the game of
poker completely, with the hope of capturing the spirit of poker in a general sense. Others
have tried to analyze specific situations or aspects of the real game with the hope that
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it may improve one’s play. Papers of Newman (1959), Friedman (1971), Cutler (1975,
1976), and Zadeh (1977), and the book of Ankeny (1981) are of this category. On the
other hand there are also books that contain valuable information and recommendations
on how to play the real game of poker. The books of Brunson (1978) and Sklansky (1987)
on general games of poker and of Sklansky and Malmuth (1988), Sklansky, Malmuth and
Zee (1989), Zee (1992) and Harrington and Robertie (2004-2006) on specific games of
poker can be recommended. Unusual in its treatment mixing mathematical analysis, game
theoretic ideas and the real game of poker, the book of Chen and Ankenman (2006) may
be especially recommended.

One of the simplest and most useful mathematical models of a situation that occurs in
poker is called the “classical betting situation” by Friedman (1971) and “basic endgame”
by Cutler (1976). These papers provide explicit situations in the game of stud poker and of
lowball stud for which the model gives a very accurate description. This model is also found
in the exercises of the book of Ferguson (1967). Since this is a model of a situation that
occasionally arises in the last round of betting when there are two players left, we adopt
the terminology of Cutler and call it Basic Endgame in poker. This will also emphasize
what we feel is an important feature in the game of poker, that like chess, go, backgammon
and other games, there is a distinctive phase of the game that occurs at the close, where
special strategies and tactics that are analytically tractable become important.

1. Basic Endgame.

Basic Endgame is played as follows. Two players, Player I and Player II, both put
an ante of a dollars into a pot (a > 0). Player I then draws a card from a deck of cards
that gives him a winning card with probability (w.p.) P and a losing card w.p. 1 − P ,
0 < P < 1. Both players know the value of P , but only Player I knows if the card he
received is a winning card or not. Player I may then check (also called pass) or bet b
dollars (b > 0). If Player I checks, the game is over and the antes goes to Player I if he
has a winning card and to Player II otherwise. If Player I bets, Player II may then fold, or
she may call by also putting b dollars in the pot. If she folds, then Player I wins the ante
whatever card he has. If Player II calls, then the ante plus the bet is won by Player I if
he has a winning card and by Player II otherwise. Only the ratio of b to a is significant,
but we retain separate symbols for the ante and the bet so that the results are easier to
understand.

Situations of the form of Basic Endgame arise in poker. For example, in the last round
of betting in a game of five card stud poker, Player I’s cards are the 5 of diamonds, the
6 of spades, the 7 of diamonds, the 8 of hearts and a hidden hole card. Player II’s cards
are the 2 of hearts, the 3 of spades, the king of spades, the king of clubs and a hidden
hole card. No matter what card Player II has in the hole, Player I will win if and only if
he has a 4 or a 9 in the hole. Since Player II has the higher hand showing, she must act
first by betting or checking. In this situation, it is optimal for her to check. Assuming she
does check, it then becomes Player I’s turn to act, and we have a situation close to Basic
Endgame described in the previous paragraph. The number a may be taken to be half the
size of the present pot, and b will be the maximum allowable bet. The number P is taken
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to be the probability that Player I has a winning hole card given the past history of the
game.

There are several reasons why Basic Endgame is not a completely accurate description
of this poker situation. In the first place, the probability P , calculated on the basis of three
rounds of betting before the final round and the actions of the players in these rounds, is
an extraordinarily complex entity. It would be truly remarkable if both players arrived at
the same evaluation of P as required by Basic Endgame. Secondly, Player II’s hole card
gives her some secret information unknown to Player I that influences her estimation of P ,
and both Player I and Player II must take this into account. In Section 5, we extend the
model to allow for this hidden type of information. Thirdly, a player may unknowingly give
away information through mannerisms, hesitations, nervousness, etc. This type of hidden
information, called “tells”, (see Caro (1984)) is of a different category than information
given by a hidden hole card. The player who gives away such information has no way
of taking this into account since he is unaware of its existence. Another way this type
of hidden information can arise is through cheating. For example, someone may gather
information about the cards through a hole in the ceiling and pass this information to
one of the players at the table. (Don’t laugh—this happened at one of the casinos in
California.) Such games in which one of the players does not know all the rules of the
game, are called pseudo-games, and have been studied by Baños (1968) and Megiddo
(1980). The extensive literature on repeated games of incomplete information (e.g. see
Aumann and Mashler (1995) or Sorin (2000)) is also an attempt to treat this problem.

If Player I receives a winning card, it is clear that he should bet: If he checks, he wins
a net total of a dollars, whereas if he bets he will win at least a dollars and possibly more.
In the analysis of the game below, we assume that Player I will bet with a winning card.

The rules of the game may be summarized in a diagram called the Kuhn tree, a device
due to Kuhn (1953). Figure 1 gives the Kuhn tree of Basic Endgame. It is to be read from
the top down. The first move is a chance move with probabilities P and 1−P attached to
the edges. Then Player I moves, followed by Player II. The payoffs to Player I are attached
to each terminal branch of the tree. The only features not self-explanatory are the circle
and the long oval. These represent information sets. The player whose turn it is to move
from such a set does not know which node of the set the previous play has led to. Thus
the long oval indicates that Player II does not know which of the two nodes she is at when
she makes her choice, whereas the circle indicates that Player I does learn the outcome of
the chance move.

In this situation, Player I has two possible pure strategies: (a) the bluff strategy—bet
with a winning card or a losing card; and (b) the honest strategy—bet with a winning card
and check with a losing card. Player II also has two pure strategies which are (a) the call
strategy—if Player I bets, call; and (b) the fold strategy—if Player I bets, fold. The payoff
matrix is the two by two matrix of expected winnings of Player I,

( fold call
honest (2P − 1)a (2P − 1)a + Pb
bluff a (2P − 1)(a + b)

)
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P 1−P

bet bet pass

call fold call fold
−a

a+b a a−(a+b)

Chance

II

II

Figure 1.

We state the solution to Basic Endgame by giving the value and optimal (i.e. minimax)
strategies for the players. There are two cases. In the first case, for values of P close to
one, there is a saddle-point — the players have optimal pure strategies. The main case
is for small values of P , when both players use both strategies with positive probabilities.
This is called the all-strategies-active case.

If P ≥ (2a + b)/(2a + 2b), then there is a saddlepoint.
(i) I’s optimal strategy is to bet always.
(ii) II’s optimal strategy is to fold always.
(iii) The value of the game is a.

If P < (2a + b)/(2a + 2b), then we are in the all-strategies-active case.
(i) I’s optimal strategy is to bluff w.p. π := (b/(2a + b))(P/(1 − P )).
(ii) II’s optimal strategy is to fold w.p. φ := b/(2a + b).
(iii) The value of the game is 2aP [(2a + 2b)/(2a + b)] − a.

These strategies have an easy derivation and interpretation using one of the basic
principles of game theory called The Indifference Principle: In those cases where your
opponent, using an optimal strategy, is mixing certain pure strategies against you, play to
make your opponent indifferent to which of those strategies he uses.

In Basic Endgame, this principle may be used as follows. In the all-strategies-active
case, II plays to make I indifferent to betting or checking with a losing card. If I passes,
he wins −a. If he bets, he wins a w.p. φ and wins −(a + b) w.p. 1 − φ, where φ is the
(unknown) probability that II folds. His expected return in this case is φa− (1−φ)(a+ b).
Player I is indifferent if φa− (1−φ)(a+ b) = −a. This occurs if φ = b/(2a+ b). Therefore,
II should choose to fold w.p. b/(2a + b).

Similarly, I chooses the probability π of betting with a losing card to make II indifferent
to calling or folding. If II calls, she loses (a+b) w.p. P , while w.p. 1−P she wins (a+b) w.p.
π and wins a w.p. 1−π; her expected loss is therefore, P (a+b)−(1−P )π(a+b)−(1−P )(1−
π)a. If she folds, she loses a w.p. P , while w.p. 1 − P , she loses a w.p. π and wins a w.p.
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1− π; in this case her expected loss is a[P + (1− P )π − (1− P )(1− π)]. She is indifferent
between calling and folding if these are equal, namely if π = (P/(1 − P ))(b/(2a + b)).
Therefore, I should bluff with this probability.

It is interesting that Player II’s optimal strategy does not depend on P in the all-
strategies-active case. In particular in pot limit poker where b = 2a, her optimal strategy
is to call w.p. 1/2 and fold w.p. 1/2. However, Player II must check the condition for the
all-strategies-active case before using this strategy. This condition is automatic for I. If I
computes π and it is greater than 1, then he should bluff w.p. one.

Choosing the Size of the Bet.

In Basic Endgame, the size of the bet of Player I was fixed at some number b > 0.
The general situation where I is allowed to choose any positive bet size, b, less that some
maximum amount, B, was investigated in an unpublished paper by Cutler (1976). The
conclusion is that Player I may as well always bet the maximum; in fact, in the all-
strategies-active case it is a mistake for I to bet less than the maximum. (By a mistake
for Player I, we mean that Player II can take advantage of such a bet without risk and
achieve a strictly better result than she could against optimal play of the opponent.) It
is dangerous for I to let the size of the bet depend on whether he has a winning card or
not. II may be able to take advantage of this information. Also, if I bets the same amount
regardless of his hand, he might as well bet the maximum since the value to him is a
nondecreasing function of the bet size.

Cutler gives optimal strategies for Player II which allow her to take advantage of any
variation in I’s bet sizes without incurring any risk. His general result is as follows, where
B represents the maximum allowable bet size.

If P ≥ B/(2a + B), Player I should always bluff with a losing hand. Player II should
always fold no matter how big or small I’s bet is.

If P < B/(2a+B), Player I should bluff by betting B w.p. (B/(2a+B))(P/(1−P )).
If Player II hears a bet of size b, 0 < b ≤ B, then she should call w.p. p(b) where

2a

2a + b
≤ p(b) ≤ min{1,

2aB

(2a + B)b
}.

Any such p(b) is minimax for Player II. In particular, she may pretend that the bet
size was fixed at b and use the solution to Basic Endgame, namely call w.p. 2a/(2a + b).
When b < B, this gives her an improved expected payoff against all strategies of Player
I except strategies that only bet less than B when I has a losing card. To obtain an
improved expected payoff against all strategies, she should call a little more often, but
with probability still less than 2aB/((2a + B)b).

2. Basic Endgame with Two Rounds of Betting.

It sometimes happens that Player I will face an endgame situation with two or more
rounds of betting yet to take place, in which the cards to be dealt between rounds do not
affect the outcome. For two rounds, this is modelled as follows.
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Two players both ante a units into the pot. Then Player I receives a winning card
w.p. P ≥ 0 and a losing card w.p. 1 − P ≥ 0. It is assumed that I knows which card he
has whenever he makes a decision, and II does not know which card I holds whenever she
makes a decision. Player I then either passes or bets an amount b1 > 0. If he passes, the
game is over and he wins a if he holds the winning card and loses that amount if he holds
the losing card. If I bets, Player II may call or fold. If II folds the game is over and I wins
a. If II calls, I may either pass or bet b2 > 0. If he passes, the game is over and he wins
a + b1 if he holds the winning card and loses that amount if he holds the losing card. If
he bets, then II may call or fold. If II folds, then the game is over and I wins a + b1. If II
calls, then the game is over and I wins a + b1 + b2 if he holds the winning card and loses
that amount if he holds the losing card.

If I receives a winning card, it is clear he should never pass. We assume the rules of
the game require him to bet in this situation. With such a stipulation, the game tree is
displayed in Figure 2.

P 1−P

Chance

bet bet pass

call fold call fold

bet bet pass

call fold call fold

−a

a a

−(a+b1)

a+b1+b2 a+b1 −(a+b1+b2) a+b1

I

I

I

I

II

II

Figure 2.

If I chooses to pass at the first round, then it does not matter what he does in the
second round. So I has just three pure strategies, pass, bet-pass, and bet-bet. Similarly, II
has just three strategies, fold, call-fold and call-call. The resulting three by three matrix
of expected payoffs is
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⎛
⎝

fold call-fold call-call
pass a(2P − 1) a(2P − 1) + Pb1 a(2P − 1) + P (b1 + b2)
bet-pass a (2P − 1)(a + b1) (2P − 1)(a + b1) + Pb2

bet-bet a a + b1 (2P − 1)(a + b1 + b2)

⎞
⎠

We state the solution to this game. Since this is a special case of the problem treated
in the next section, we omit the proof. Let

P0 :=
(2a + b1)(2a + 2b1 + b2)

(2a + 2b1)(2a + 2b1 + 2b2)
.

If P > P0, then
(i) the value is V = a,
(ii) it is optimal for Player II to fold on the first round, and
(iii) it is optimal for Player I to bet on the first round, and to bet w.p. (P/(1−P ))(b2/(2a+
2b1 + b2)) (or w.p. 1 if this is greater than 1) on the second round.

If P ≤ P0, then all strategies are active,
(i) the value is V = a(2P − P0)/P0

(ii) it is optimal for Player II to fold on the first round w.p. b1/(2a + b1), and to fold on
the second round w.p. b2/(2a + 2b1 + b2), and
(iii) with a winning card, Player I always bets; with a losing card, he bets on the first round

w.p.
P

1 − P
· 1 − P0

P0
, and on the second round w.p.

b2(2a + b1)
b2(2a + b1) + 2b1(a + b1 + b2)

.

Note the following features. The cutoff-point, P0, between the two cases is just the
product of the cutoff points of the two rounds treated separately, that is (2a+b1)/(2a+2b1)
for the first round and (2a + 2b1 + b2)/(2a + 2b1 + 2b2) for the second round. The first
case, P > P0, occurs if and only if the lower right 2 by 2 submatrix of the payoff matrix
has value at least a. If Player I uses the optimal strategy for this 2 by 2 submatrix, then
his expected payoff is at least a, and since he can get no more than a if Player II always
folds, the value must be a. In this sense, the first case is easy.

In the all-strategies-active case where P ≤ P0, Player II’s optimal strategy is just the
strategy that uses her optimal strategy for Basic Endgame in both the first and second
round. In the first round, Player II sees a pot of size 2a + b1 and is required to invest b1

to have a chance to win it. Therefore, she folds w.p. b1/(2a + b1). In the second round,
she sees a pot of size 2a + 2b1 + b2 and is required to call with b2 to continue. Therefore,
she folds with conditional probability b2/(2a + 2b1 + b2).

Player I’s optimal strategy in the all-strategies-active case makes Player II indifferent
to folding or calling in both the first and the second round. It is interesting to note that
Player I’s behavioral strategy in the second round is independent of P .
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Choosing the Sizes of the Bets.

In choosing the sizes of the bets in the all-strategies-active case, three cases deserve
special mention. The first case is the case of limit poker, where there is a fixed upper limit,
B, on the size of every bet. The value, V , is an increasing function of both b1 and b2, so
the optimal choice of bet size for Player I is b1 = b2 = B. The formulas for the optimal
strategies and the value do not simplify significantly in this case.

The second case is the pot-limit case. Since V is increasing in both b1 and b2, the
optimal choices are b1 = 2a and b2 = 6a, the pot-limit bets. The basic formulas for the
solution simplify in this case. The inequality defining the all-strategies-active case reduces
in this case to P ≤ 4/9. The value is V = (9P − 2)a/2. The optimal strategy of Player II
is: Call w.p. 1/2 on both the first and second rounds. The optimal strategy for Player I is:
Bet with a winning card; with a losing card bet on the first round w.p. (5/4)(P/(1 − P )),
and on the second round w.p. 2/5.

The third case is no-limit (table-stakes) poker, in which a player may bet as much
as he likes but no more than he has placed on the table when play begins. In addition,
if the amount bet exceeds that amount he has left, he may call that part of the bet up
to the amount he has left. If there are two players with remaining resources, B1 and B2,
the maximum bet size is for all practical purposes B = min{B1, B2}. As in Section 1, it
is optimal for Player I to bet the maximum eventually, but the question remains of how
much of it to bet on the first round.

Suppose therefore that the sum of the bets, b1 + b2 = B, is fixed, and Player I is
allowed to choose the size of the first bet, b1, subject to 0 ≤ b1 ≤ B. Then in the
all-strategies-active case, the optimal value of b1 is to maximize

V = a

(
2P

(2a + 2b1)(2a + 2b1 + 2b2)
(2a + b1)(2a + 2b1 + b2)

− 1
)

= a

(
2P

(2a + 2b1)(2a + 2B)
(2a + b1)(2a + b1 + B)

− 1
)

.

The value of b1 that maximizes V is easily found by setting the derivative of V with respect
to b1 to zero. Solving the resulting equation reveals the optimal choice of b1 to be

b1 =
√

aB + a2 − a.

3. Basic Endgame With Many Rounds of Betting.

We may extend Basic Endgame to allow an arbitrary finite number, n, of betting
rounds.

Two players both ante a units into the pot, a > 0. Then Player I receives a winning
card w.p. P ≥ 0 and a losing card w.p. 1 − P ≥ 0. It is assumed that I knows which card
he has whenever he makes a decision, and II does not know which card I holds whenever
she makes a decision. Player I then either passes or bets an amount b1 > 0. If he passes,
the game is over and he wins a if he holds the winning card and loses that amount if he
holds the losing card. If I bets, Player II may call or fold. If II folds the game is over and
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I wins a. If II calls, the game enters round 2. In round k where 2 ≤ k < n, I may either
pass or bet bk > 0. If he passes, the game is over and he wins a + b1 + · · · + bk−1 if he
holds the winning card and loses that amount if he holds the losing card. If he bets, then
II may call or fold. If II folds, then the game is over and I wins a + b1 + · · · + bk−1. If II
calls, then the game enters round k + 1. If II calls in round n, the game is over and I wins
a + b1 + · · · + bn if he holds the winning card and loses that amount if he holds the losing
card. We first assume the bk are fixed numbers.

Below, we derive the value optimal strategies of the players. We summarize the
solution as follows.

Summary of Solution. Let

rk :=
bk

2(a + b1 + · · · + bk−1) + bk

and let P0 = (
∏n

1 (1 + rj))
−1.

If P > P0, then it is optimal for Player I to bet on the first round and for Player II
to fold. The value is V = a.

If P ≤ P0, then
(1) the value is V = a(2P − P0)/P0,
(2) Player II’s optimal strategy is at each stage k to fold w.p. rk, and
(3) Player I’s optimal strategy is to bet with a winning card; with a losing card, to bet

on the first stage w.p. p1 =
P

1 − P
· 1 − P0

P0
, and if stage k > 1 is reached, to bet w.p.

pk =
∏n

k (1 + rj) − 1∏n
k−1(1 + rj) − 1

.

We notice some remarkable features of this solution in the all-strategies-active case,
P ≤ (

∏n
1 (1 + rj))

−1. First note that rk is just the amount bet at stage k divided by the
new pot size. This means that Player II’s optimal strategy is just the repeated application
of Player II’s optimal strategy for Basic Endgame. In addition, Player I’s optimal strategy
depends on P only at the first stage; thereafter his behavior is independent of P . After
the first stage, he will bet with the same probabilities if P is very small, say P = .001, as
he would if P = .1. This means that his main decision to bluff is taken at the first stage;
thereafter all bluffs are carried through identically.

Derivation. If I receives a winning card, it is clear he should never pass. We assume
the rules of the game require him to bet in this situation.

Player I has n +1 pure strategies, i = 0, 1, . . . , n, where i represents the strategy that
bluffs exactly i times. Similarly, there are n+1 pure strategies for Player II, j = 0, 1, . . . , n,
where j represents the strategy that calls exactly j times. Let Aij denote the expected
payoff to I if I uses i and II uses j. Let

sj := a + b1 + · · · + bj

9



denote half the size of the pot after round j; in particular, s0 = a. Then

Aij =
{

Psj − (1 − P )si for 0 ≤ i ≤ j ≤ n
sj for 0 ≤ j < i ≤ n. (1)

Let (σ0, σ1, . . . , σn) denote the mixed strategy for Player II in which σj is the proba-
bility that II calls exactly j times. If II uses this strategy and Player I uses i, the average
payoff is

Vi :=
n∑

j=0

Aijσj =
i−1∑
j=0

sjσj + P
n∑

j=i

sjσj − (1 − P )si

n∑
j=i

σj

= P
n∑

j=0

sjσj + (1 − P )
i−1∑
j=0

sjσj − (1 − P )si

n∑
j=i

σj .

(2)

We search for a strategy (σ0, σ1, . . . , σn) to make Vi independent of i. Such a strategy
would guarantee that Player II’s average loss would be no more than the common value of
the Vi. We look at the differences

Vk − Vk−1 = (1 − P )[(sk + sk−1)σk−1 − (sk − sk−1)
n∑

j=k−1

σj ] (3)

This is zero for k = 1, . . . , n if

σk−1∑n
j=k−1 σj

=
sk − sk−1

sk + sk−1
= rk (4)

This defines the σk. In fact, the left side represents the probability II folds in round k
given that it has been reached, and so is the behavioral strategy for II in round k. The
equalizing value of the game may be found as follows.

V0 = P
n∑

j=0

sjσj − (1 − P )s0

Vn =
n−1∑
j=0

sjσj + Psnσn − (1 − P )snσn =
n∑

j=0

sjσj − 2(1 − P )snσn

(5)

From V0 = Vn, we see that
∑n

j=0 sjσj = 2snσn − s0. This gives the value as V0 =
2Psnσn − s0. Finally, repeatedly using (4) in the form 1− rk =

∑n
k σj/

∑n
k−1 σj , we find

that
∏n

i=1(1 − ri) = σn. Hence the value is

V0 = 2Psn

n∏
i=1

(1 − ri) − s0.
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Noting that 1 − rk = 2sk−1/(sk + sk−1) and 1 + rk = 2sk/(sk + sk−1), we find that
sn

∏n
1 (1 − rk) = s0

∏n
1 (1 + rk). This, with s0 = a, gives an alternate form of V0, namely

V0 = a

(
2P

n∏
1

(1 + rk) − 1

)
= a

(
2

P

P0
− 1

)
. (6)

Player II can keep the value of the game to be at most V0. But Player II can also keep
the value to be at most a by folding always. We shall now see by examining Player I’s
strategies that the value of the game is the minimum of (6) and a.

Let (π0 , π1, . . . , πn) denote a mixed strategy of Player I, where πi is the probability
of making exactly i bets. If Player I uses this strategy and Player II uses column j, the
average payoff is for 0 ≤ j ≤ n,

Wj :=
n∑

i=0

πiAij =
j∑

i=0

πi(Psj − (1 − P )si) +
n∑

i=j+1

πisj

= Psj + (1 − P )sj

n∑
i=j+1

πi − (1 − P )
j∑

i=0

siπi.

(7)

Equating Wj and Wj−1 leads to the following simultaneous equations for 1 ≤ j ≤ n,

P (sj − sj−1) + (1 − P )(sj − sj−1)
n∑

i=j+1

πi − (1 − P )(sj + sj−1)πj = 0 (8)

Solving for πj yields the equations,

πj =
P

1 − P
rj + rj

n∑
i=j+1

πi. (9)

which defines πn, . . . , π1 by backward induction. We find πn = (P/(1 − P ))rn , and

n∑
i=j+1

πi =
P

1 − P

⎡
⎣ n∏

i=j+1

(1 + ri) − 1

⎤
⎦ , (10)

so that Player I’s behavioral strategy at stages 2 ≤ j ≤ n is

pj =

∑n
j πi∑n

j−1 πi
=

∏n
j (1 + ri) − 1∏n

j−1(1 + ri) − 1
. (11)

The behavioral strategy at the first stage is

p1 = 1 − π0 =
n∑
1

πi =
P

1 − P

[
n∏
1

(1 + ri) − 1

]
. (12)
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Assuming the resulting p1 ≤ 1, we can evaluate the common value of the Wj using

W0 = Ps0 + (1 − P )s0

n∑
i=1

πi − (1 − P )s0π0 = 2Ps0

n∏
1

(1 + ri) − s0 = V0. (13)

Therefore, W0 = V0 is the value of the game provided p1 ≤ 1, or equivalently, provided
P

∏n
1 (1 + ri) ≤ 1.

Finally it is easily checked that p1 ≤ 1 if and only if V0 is not greater than s0.

Choosing the sizes of the bets.

Suppose that the initial size of the pot, 2b0 = 2s0, is fixed, and that the total amount
to be bet, b1 + · · · + bn = sn − s0, is fixed, where n is the number of rounds of betting.
This situation occurs in no-limit, table stakes games, where sn − s0 is the minimum of
the stakes that Player I and Player II have in front of them when betting begins. In the
last round, Player I should certainly bet the maximum amount possible. The problem for
Player I is to decide how much of the total stakes to wager on each intervening round.
This is equivalent to finding the choices of s1, s2, . . . , sn−1 that maximize the value, V0, of
(6) subject to the constraints,

s0 ≤ s1 ≤ s2 ≤ · · · ≤ sn. (14)

Maximizing V0 is equivalent to maximizing

n∏
i=1

(1 + ri) =
n∏

i=1

2si

si + si−1
. (15)

As a function of si for fixed s1, . . . , si−1, si+1, . . . , sn−1, this proportional to

si

(si + si−1)(si+1 + si)
(16)

This is unimodal in si on (0,∞) with a maximum at (si + si−1)(si+1 + si) = si[si+1 +
2si + si−1], or equivalently, at

si =
√

si−1si+1 (17)

Note that si is the geometric mean of si−1 and si+1 so that si is between si−1 and si+1.
Thus, the global maximum of (15) subject to (14) occurs when (17) is satisfied for all i =
1, 2, . . . , n−1. Inductively using (17) from i = 1 to n−1, we can find si in terms of s0 and
si+1 to be si = s

1/(i+1)
0 s

i/(i+1)
i+1 for i = 1, . . . , n. For i = n− 1, this is sn−1 = s

1/n
0 s

(n−1)/n
n .

We may now work back to find

si = s
(n−i)/n
0 si/n

n = s0(sn/s0)i/n for i = 1, . . . , n − 1. (18)

12



From this we may find the folding probabilities for Player II.

ri =
s
1/n
n − s

1/n
0

s
1/n
n + s

1/n
0

for i = 1, . . . , n − 1. (19)

Note that this is independent of i. Since this is the ratio of bet size to the size of the new
pot, one sees that the optimal bet size must be a fixed proportion of the size of the pot!
This proportion is easily computed to be

r

1 − r
=

(sn/s0)1/n − 1
2

, (20)

where r denotes the common value of the ri of (19). Note that this is independent of P !
Therefore it is optimal for Player I to bet this proportion of the pot at each stage.

Let us compute Player I’s optimal bluffing probabilities. At the initial stage, I should
bet (with a losing card) w.p.

p1 =
P

1 − P
[(r + 1)n − 1], (21)

If p1 > 1, then Player I should bet w.p. 1, and Player II should fold. In terms of P , this
inequality becomes P ≤ (r + 1)−n, so if P ≤ (r + 1)−n, Player I should bluff initially w.p.
p1 and subsequently, if stage j + 1 is reached, he should bluff w.p.

pj+1 =
(1 + r)n−j − 1

(r + 1)n−j+1 − 1
. (22)

The value of the game when the optimal bet sizes are used is

V0 = a

(
P2n+1sn

(s1/n
n + s

1/n
0 )n

− 1

)
(23)

Example.

Suppose there are $20 in the pot, so s0 = 10, and suppose there are going to be three
rounds of betting, so n = 3. If one player has $260 in front of him and the other has $330,
then since s3 − s0 is the minimum of these two quantities, we have s3 = 260 + 10 = 270.
Then s3/s0 = 27 and 271/3 = 3, so from (18), si = 10 · 3i, so s1 = 30 and s2 = 90.
Therefore, Player I should bet s1 − s0 = $20 on the first round. If II calls I should bet
$60= s2 − s1 on the second round. In this example, I bets the size of the pot at each
round (including the third round), the same amount as in pot limit poker. To be in the
all-strategies-active case, we require P < 8/27. If this is satisfied, Player II calls each bet
of Player I w.p. r = 1/2; this agrees with (19). To find Player I’s bluffing probabilities,
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we must specify P . If P = 1/4 for example, then p1 = (1/3)[(3/2)3 − 1] = 19/24. The
subsequent betting probabilities (22) are

p2 =
(3/2)2 − 1
(3/2)3 − 1

= 10/19 and p3 =
(3/2) − 1
(3/2)2 − 1

= 2/5.

Note that these probabilities are decreasing in the later rounds.

The proportion of the pot Player I bets on each round depends on the amount of the
minimum table stakes. If this was $70 instead of $260, then the optimal bet would be half
the size of the pot at each stage.

4. Basic Endgame With a Continuum Number of Rounds.

We see that Player I gets a definite advantage if he is allowed to split his betting
over two rounds rather than betting the entire amount in one round. To see what sort of
advantage I gets from a large number of rounds, we model the game as having a continuum
number of rounds. We suppose that both players ante 1 unit each into the pot, and that
the total amount to be bet is B, with an infinitesimal bet of dt being placed at time t for
0 < t < B. Before play begins, Player I receives a winning card w.p. P and a losing card
w.p. 1 − P . If I has a winning card, he bets continuously throughout the whole interval
[0, B]. If he has a losing card, he chooses a time x ∈ [0, B] at which to stop betting. If
x = 0, he passes initially, and if x = B he bets throughout the whole interval. Player
II chooses a time y ∈ [0, B] at which to stop calling. For fixed choices of x and y, the
expected payoff is

W (x, y) =
{

1 + y if 0 ≤ y < x ≤ B
P (1 + y) − (1 − P )(1 + x) if 0 ≤ x ≤ y ≤ B. (1)

Thus if II stops calling before I stops betting, I wins the ante plus the total amount bet,
namely 1 + y. If I stops betting (with a losing card) before II stops calling, I wins 1 + y
if he has the winning card and loses 1 + x if he has the losing card. We assume that x
represents the last time Player I bets and y represents the last time player 2 calls, so that
if x = y, the payoff is P (1 + y) − (1 − P )(1 + x).

Let us analyze this game assuming the general principle that at all stages Player II
will fold w.p. equal to the amount bet divided by the present pot size, which at time y is
dy/(2 + 2y + dy) ∼ dy/(2 + 2y). We will see that this strategy makes I indifferent. If we
let Y denote the random time at which Player II folds, then the general principle above
implies that P{Y = y|Y ≥ y} = dy/(2 + 2y). The quantity on the left is known as the
failure rate of the distribution of Y . It is equal to G′(y)/(1−G(y)), where G(y) denotes the
distribution function of Y . The above equation becomes G′(y)/(1−G(y)) = 1/(2(1 + y)),
which may also be written − d

dy log(1 − G(y)) = 1
2

d
dy log(1 + y). Solving this differential

equation for G(y) and using the boundary condition G(0) = 0, we find

G(y) = 1 − 1√
1 + y

for 0 < y < B. (2)
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Since G(B) = 1, we see that G gives probability P0 := 1/
√

1 + B to the point B. This is
the probability that Player II never folds. If we take the expectation of W (x, Y ) for fixed
x we find∫

W (x, y)dG(y) =
∫ x

0

(1 + y)dG(y) +
∫ B

x

[P (1 + y) − (1 − P )(1 + x)] dG(y)

+
1√

1 + B
[P (1 + B) − (1 − P )(1 + x)]

= (
√

1 + x − 1) + P (
√

1 + B −
√

1 + x)

− (1 − P )(1 + x)
(

1√
1 + x

− 1√
1 + B

)

+
1√

1 + B
[P (1 + B) − (1 − P )(1 + x)]

= 2P
√

1 + B − 1 = 2
P

P0
− 1

(3)

independent of x. Since Player II can always keep her losses to be at most 1 by folding
immediately, we suspect that the value of the game is the minimum of these, namely

V =
{

2(P/P0) − 1 if P ≤ P0

1 if P ≥ P0
(4)

To show that this is in fact the value, we consider a similar strategy for Player I. Let
F (x) denote the distribution function of random time at which Player I stops betting with
a losing card, and take F to have a mass δ0 at x = 0, zero probability on the interval
(z,B], for some z ≤ B, and a positive density on the interval (0, z) of the following form:

F (x) = δ0 + c(1 − 1√
1 + x

) for 0 ≤ x ≤ z, (5)

where the parameters δ0 ≥ 0, c > 0 and z > 0 are restricted so that F (z) = 1. For fixed y
with 0 ≤ y ≤ z, the expectation of W (X, y) is∫

W (x, y)dF (x) = (1 + y)(1 − (1 − P )(δ0 + c)) + (1 − P )(c − δ0) (6)

and for z ≤ y ≤ B, we have∫
W (x, y)dF (x) = P (1 + y) − (1 − P )(δ0 + c(

√
1 + z − 1)). (7)

Since (7) is increasing in y, Player II will never choose a y larger than z. Expression (6) is
a constant in y ∈ [0, z] provided (1 − P )(δ0 + c) = 1 so Player I can keep the value of the
game to at least (1−P )(c−δ0). So I chooses δ0 = (1/(1−P ))−c and proceeds to choose c
and z to make c as large as possible, subject to the condition that F , which is now F (x) =
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(1/(1 − P )) − (c/
√

1 + x) for 0 ≤ x ≤ z, is still a distribution function. If P
√

1 + B ≤ 1,
we may choose z = B and c = (P/(1 − P ))

√
1 + B, since δ0 = (1 − P

√
1 + B)/(1 − P )

is still nonnegative. In this case the value is (1 − P )(c − δ0) = 2P
√

1 + B − 1, the same
as found in (4). But if P

√
1 + B ≥ 1, we must choose δ0 = 0 and c = 1/(1 − P ), when

z = (1/P 2) − 1. In this case the value is (1 − P )(c − δ0) = 1, also found in (4).

Summary of the Solution. Let P0 = 1/
√

B + 1.

If P ≤ P0, then the value is 2(P/P0) − 1. Player I has an optimal strategy,

F (x) =
1

1 − P
− P

1 − P

√
1 + B√
1 + x

for 0 ≤ x ≤ B,

with mass (1 − P
√

1 + B)/(1 − P ) at x = 0. Player II has an optimal strategy

G(y) = 1 − 1√
1 + y

for 0 ≤ y ≤ B,

with mass P0 at y = B.

If P ≥ P0, then the value is 1. Player I has an optimal strategy,

F (x) =
1

1 − P

(
1 − 1√

1 + x

)
for 0 ≤ x ≤ 1

P 2
− 1.

Player II has an optimal strategy that gives mass 1 to the point y = 0 (i.e. fold immedi-
ately).

It may be noted that when P
√

1 + B ≤ 1, the hazard rate of Player I’s optimal
strategy (i.e. F ′(x)/(1 − F (x))) is independent of P . Of special interest is the fact that if
Player I is bluffing, he will stop betting before reaching B; that is his strategy gives zero
probability to the point B.

5. Endgame with Information for Player II.

We modify Basic Endgame by allowing Player II to receive information on Player I’s
card. This provides a model of situations that occur regularly in poker. For example,
suppose Player I needs a four or a nine to complete a straight, or a spade to complete a
flush. Player II’s hand may contain a four or a spade unknown to Player I, giving Player
II some hidden information on the chances that Player I has a straight or a flush. This
situation is modeled as follows.

The game is two-person, zero-sum. Player I receives a winning card, W , w.p. P , and
a losing card, L, w.p. 1 − P , where 0 < P < 1. Then Player I observes his card and must
either check or bet a fixed amount b > 0. If Player I checks, the game ends and Player I
wins or loses the ante a > 0, depending on whether he has W or L.

Suppose Player I bets. Then Player II is allowed to observe a random variable Y
whose distribution depends on the card received by Player I. We may assume without loss
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of generality that the density of Y with respect to a σ-finite measure, µ, exists. Let fW (y)
denote the density of Y if I has W , and fL(y) denote the density of Y if I has L. Based on
the observation Y , II must either call or fold. If Player II folds, the game ends and I wins
a from II. If Player II calls, the game ends and Player I wins or loses a + b depending on
whether I has W or L. It is assumed that both players know a, b, P and fW , fL and µ.

It is clear that Player I may as well bet whenever he holds W . We assume without
loss of generality that the rules of the game require this. Then a pure strategy for I is
just a rule telling him what to do when he receives an L. Therefore, I has just two pure
strategies. He may bet with a losing card, the bluff strategy, or he may check with a losing
card, the honest strategy.

A pure strategy for II is a rule telling her whether to fold or call for each possible
value of Y that may be observed. A behavioral strategy for Player II is a function φ(y)
satisfying 0 ≤ φ(y) ≤ 1 for all y, with the understanding that if II observes Y = y she folds
w.p. φ(y) and calls with probability 1 − φ(y). In statistical parlance, φ is called a test.

Let EW φ(Y ) =
∫

φ(y)fW (y)dµ(y). Then EW φ(Y ) represents the probability that II
folds given I has a high card and bets. Similarly, ELφ(Y ) =

∫
φ(y)fL(y)dµ(y) represents

the probability that II folds given I has a low card and bets. The expected payoff to Player
I if he uses one of his pure strategies and II uses φ is

V (bluff , φ) = P [(a + b)EW (1 − φ(Y )) + aEW φ(Y )]
+ (1 − P )[−(a + b)EL(1 − φ(Y )) + aELφ(Y )]

= (2P − 1)(a + b) − PbEW φ(Y ) + (1 − P )(2a + b)ELφ(Y )
V (honest , φ) = P [(a + b)EW (1 − φ(Y )) + aEW φ(Y )] − (1 − P )a (1)

= (2P − 1)a + Pb − PbEW φ(Y ).

If ELφ(Y ) is fixed equal to some number α, then II will choose φ subject to this
constraint to maximize EW φ(Y ) since both V (bluff , φ) and V (honest , φ) are decreasing in
EW φ(Y ). Such a φ is called a best test of size α for testing the hypothesis H0 : fL(y)
against H1 : fW (y). Player II may restrict her attention to such φ. The Neyman-Pearson
Lemma states that for fixed 0 < α ≤ 1, the test of the form

φα(y) =

⎧⎨
⎩

0 if fW (y) < kfL(y)
γ if fW (y) = kfL(y)
1 if fW (y) > kfL(y)

(2)

is a best test of size α when k ≥ 0 and γ are chosen so that ELφ(Y ) = α. In addition,
corresponding to k = ∞, the test

φ0(y) =
{

1 if fL(y) = 0
0 if fL(y) > 0 (3)

is a best test of size α = 0. Player II may restrict attention to the tests φα for 0 ≤ α ≤ 1.
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Player II’s optimal strategy is to choose α so that the maximum of V (bluff , φα) and
V (honest , φα) is a minimum. The difference in the payoffs is V (bluff , φα)−V (honest , φα) =
(1 − P )((2a + b)α − b). This is linear increasing in α with a unique root,

α0 = b/(2a + b) (4)

in (0, 1). Moreover, EW φα(Y ) is nondecreasing in α (in fact concave, and increasing as
long as it is less than 1), so V (honest , φα) is nonincreasing in α. Hence, there are only two
cases, depending on the sign of sr, the right slope of V (bluff , φα) at α = α0.

Case 1: sr > 0. In this case, φα0 is optimal for Player II. It is interesting to note that
this strategy does not depend on P . If sl denotes the left slope of V (honest , φα), then
sl ≤ 0 and an optimal strategy for Player I is to mix bluff and honest in the proportions
|sl| and sr.

Case 2: sr ≤ 0. In this case, it is optimal for Player I to bluff all the time. If α1 denotes
the value of α that minimizes V (bluff , φα), then α1 > α0 and φα1 is an optimal strategy
for Player II. In this case, the optimal strategy for II may be taken to be nonrandomized.

As noted in Ferguson (1967), a sufficient condition for sr to be positive is that P < 1/2.
This may be seen as follows. Let g(α) = EW φα(Y ). Using ELφα(Y ) = α in (1), we have
V (bluff , φα) = (2P − 1)(a+ b)−Pbg(α)+ (1−P )(2a+ b)α. Letting g′(α) denote the right
slope of g(α), we have sr = −Pbg′(α0)+(1−P )(2a+b) = P (2a+b)[(1−P )/P −α0g

′(α0).
But since g is concave and g(0) ≥ 0, we have g′(α0) ≤ g(α0)/α0. Therefore, if P < 1/2,
we have sr > 0.

It is interesting to compare this solution with that of Basic Endgame. In the latter, the
cutoff between Case 1 and Case 2 is P = (2a + b)/(2a + 2b), and while the cutoff between
Case 1 and Case 2 in the above solution may be greater or less than this, it is always at least
1/2. In Case 1 of Basic Endgame, Player II always folds with probability α0 = b/(2a + b),
while in the above solution, II folds w.p. α0 when Player I has L (i.e. ELφα0(Y ) = α0),
and w.p. EW φα0(Y ) > α0 when Player I has W . In other words, Player I can detect that
Player II is using his information only by noting that II is calling I’s winning hands less
often.

Although Player I’s strategy depends on P , one feature of this strategy is independent
of P , namely the probability that he has L given that he has bet in Case 1. Using
sr = −Pbg′(α0) + (1−P )(2a + b) and sl = −Pbg′(α0), we find the probability that I bets
with a L is |sl|/(sr + |sl|) = Pbg′(α0)/((1 − P )(2a + b)) = Pα0g

′(α0)/(1 − P ). Thus we
have P (I has L|I bets) = α0g

′(α0)/(1 + α0g
′(α0)), independent of P .

The Binary Case.

As a simple illustration of the computations involved, we consider the case where
the observation Y takes only two values, say 0 and 1, and fL(1) = pL, fL(0) = 1 − pL,
fW (1) = pW and fW (0) = 1 − pW . If pL = pW , then the observation of Y gives no
information about the card Player I has, and the problem reduces to Basic Endgame.
Otherwise, we may assume without loss of generality that pW > pL. Then Player II
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prefers to see Y = 0 since then it is less likely Player I has W . We refer to Y = 0 as good
hands of Player II, and Y = 1 as poor hands.

First we find the best test of size α. For 0 ≤ α < pL, we must set k = pW /pL and we
have

φα(y) =
{

0 if y = 0
γ if y = 1 (5)

where for ELφα(Y ) = γpL to be equal to α, we require γ = α/pL. This is the strategy:
Call with a good hand. With a poor hand, fold w.p. γ = α/pL and call w.p. 1 − γ.

For pL < α ≤ 1, we must set k = (1 − pW )/(1 − pL) and we have

φα(y) =
{

γ if y = 0
1 if y = 1 (6)

where for ELφα(Y ) = pL + (1 − pL)γ to be equal to α, we require γ = (α − pL)/(1 − pL).
This is the strategy: Fold with a poor hand. With a good hand, fold with probability
γ = (α − pL)/(1 − pL) and call w.p. 1 − γ.

For α = pL, we may put k = 1 and find

φα(y) =
{

0 if y = 0
1 if y = 1. (7)

This is the strategy: Call with a good hand. Fold with a poor hand .

To implement the above solution, we need sr, the right slope of V (bluff , φα), and sl,
the left slope of V (honest , φα). We first find

EW φα(Y ) =
{

αpW /pL for 0 ≤ α ≤ pL

pW + (α − pL)(1 − pW )/(1 − pL) for pL < α ≤ 1. (8)

From this we may find

sr(α) =
{
−PbpW /pL + (1 − P )(2a + b) for 0 ≤ α < pL

−Pb(1 − pW )/(1 − pL) + (1 − P )(2a + b) for pL ≤ α < 1. (9)

and

sl(α) =
{
−bPpW /pL for 0 < α ≤ pL

−bP (1 − pW )/(1 − pL) for pL < α ≤ 1. (10)

We may state the solution as follows. Let

α0 =
b

2a + b
β0 =

pL

pW

1 − P

P
β1 =

1 − pL

1 − pW

1 − P

P

and note that β0 < β1 since we are assuming pL < pW .
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1. If α0 ≥ β1, then
it is optimal for I to bluff, and
it is optimal for II to fold.
The value is a.

2. If α0 < β1 and α0 ≥ pL, then
it is optimal for I to bluff w.p. α0/β1, and
it is optimal for II to fold with a poor hand and

to fold w.p. (α0 − pL)/(1 − pL) with a good hand.
The value is a[1 − 2(1 − P )(1 − (α0/β1))].

3. If β0 ≤ α0 < β1 and α0 < pL, then
it is optimal for I to bluff, and
it is optimal for II to fold with a poor hand and

to call with a good hand.
The value is (2P − 1)(a + b) − pL(1 − P )b((α0/β0) − 1)(2a + b).

4. If α0 < β0 and α0 < pL, then
it is optimal for I to bluff w.p. α0/β0, and
it is optimal for II to call with a good hand and

to fold w.p. α0/pL with a poor hand.
The value is (2P − 1)(a + b) + b(1 − P )(1 − (α0/β0)).

Case 1

Case 2Case 4

Case 3

0 10

1

P

pL
α0

Figure 3.

Figure 3 shows the regions of (α0, P ) for the four cases when pL = .35 and pW = .85.

The mixed strategy cases (Case 2 and Case 4) may be derived from the solution to
Basic Endgame as follows. Player I will be indifferent between betting and folding with an L
if Player II folds with overall probability α0. So II should choose her strategy in such a way
that her overall probability of folding is α0. In Case 4 if I has an L, II folds w.p. pL ·(α0/pL)
which is α0. Also in Case 2 if I has an L, II folds w.p. pL + (1 − pL)(α0 − pL)/(1 − pL)
which is also α0.

Similarly for Player I. In Case 4, he should play to keep II indifferent if she has
a poor hand, while in Case 2 he should play to keep her indifferent if she has a good
hand. If Player II has a poor hand, she evaluates the probability that I has a W as
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P1 = PpW /(PpW + (1 − P )pL) = 1/(1 + β0), so I should replace P in his strategy for
Basic Endgame with P1. This is in fact what he does since α0P1/(1 − P1) = α0/β0.
If Player II has a good hand, she evaluates the probability that I has a W as P1 =
P (1− pW ) + (1−P )(1− pL), so I should bluff w.p. α0P0/(1−P0) = α0/β1, which is what
he does.

Examples.

Example 1 . Consider the introductory example of the last round of stud poker with Player
I having a 5, 6, 7 and 8, not suited, showing and Player II having 2, 3, K and K showing.
For the purposes of this example we shall take the probabilities, P , pL, and pW , to be those
assuming that the down card was dealt last. Since there are exactly 8 cards out of the
remaining 44 cards that can give Player I a straight, we have P = 8/44 = 2/11. Similarly,
pL = 35/43 and pW = 36/43. Then we may compute β0 = (35/36) · (9/2) = 35/8, and
β1 = (8/7) · (9/2) = 36/7. Suppose we are playing pot limit poker so that b = 2a and
α0 = 1/2. Then α0 < β0 and α0 < pL so we are in Case 4. If he doesn’t have the straight,
Player I should bluff w.p. α0/β0 = 4/35. With a good card (4 or 9), Player II should call.
With a poor card, she should fold w.p. α0/pL = 43/70.

Example 2 . An interesting feature of this game is that, unlike Basic Endgame, it may be
optimal to bet less than the maximum allowable bet. One can guess that this will occur in
situations where Player II can sometimes, though rarely, get sure information that Player
I has a losing card. I can gain by bluffing reasonably often, but with a high enough bet
size this cannot be optimal because Player II will call only when she knows she will win.
Here is an example.

Suppose P = 1/2, pW = 1 and pL = 1 − ε for some small ε > 0. This means that
Player II will occasionally (probability ε) get accurate information that Player I has a
losing card. Then β1 = ∞ so case 1 does not occur. Moreover β0 = pL so Case 3 does not
occur. If α0 ≥ pL (Case 2), then I does not bluff and the value is 0. If α0 < pL (Case 4),
then I bluffs w.p. α0/pL, and II calls with a good hand and folds w.p. α0/pL with a poor
hand. The value is (b/2)(1− (α0/pL)) = b(pL − (b/(2a + b))/(2pL). This is positive for α0

in the interval [0, pL], and has a maximum at b = 2a((1/
√

ε)− 1). For example, if ε = 1/4,
then the optimal bet size is b = 2a, the bet size for pot limit poker.

Example 3 . The phenomenon of finite optimal bet size is frequent in this model. We take
another example with continuous observations for Player II. Suppose the random variable
Y has a uniform distribution when Player I has a losing card, i.e. fL(y) = 1 on the set
(0, 1), and suppose Y has a triangular distribution with fW (y) = 2(1 − y) on (0, 1) when
I has a winning card. The best tests of size α are simply

φα(y) =
{

1 if y ≤ α
0 if y > α.

Then g(α) = Eφα(Y ) = (2 − α)α. We are in the case of a positive slope of V (bluff , φα)
at α = α0 = b/(2a + b), so φα0 is optimal for Player II. The value may be computed
as V (honest , φα0) = (2P − 1)a + 4a2Pb/(2a + b)2. As a function of b, the value has a
maximum at b = 2a, again pot limit poker.
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6. Endgame with Imprecise Information for Player I.

We consider the generalization of basic endgame achieved by allowing the card received
by Player I to indicate only his probability of winning. This models situations in which
there are still cards to be drawn, which with some probability may change a winning hand
into a losing one. We model this by denoting the card Player I receives by the probability of
win. Thus, if he receives a card marked p, then p is his probability of win. The distribution
of p on [0, 1] is arbitrary however, and may be discrete or continuous. The distribution
function of p is denoted by F . In Basic Endgame, p is either 0 or 1, and the probability
that p = 1 is P . It is assumed that both players know F but only Player I learns the value
of p. Other than this, the form of the game with one possible bet and then a call or fold
is the same as it was in Basic Endgame.

Player II has the same two pure strategies of fold or call. But now Player I may use
a distinct strategy for each card he receives. A mixed strategy for Player I is a function,
φ(p), that denotes the probability that Player I bets when he observes that his probability
of win is p. We have 0 ≤ φ(p) ≤ 1 for all p. The expected payoff to Player I if he uses φ
and II uses one of her pure strategies is

V (φ, fold ) = E[φ(p)a − (1 − φ(p))a(2p − 1)] = 2aE(1 − p)φ(p) + a(2µ − 1)
V (φ, call ) = E[φ(p)(2p − 1)(a + b) + (1 − φ(p))a(2p − 1)]

= bEφ(p) − 2bE(1 − p)φ(p) + a(2µ − 1)

where µ = Ep denotes the overall probability that I wins. Out of the class of φ (with
0 ≤ φ(p) ≤ 1) such that E(1−p)φ(p) is held fixed, I will choose φ to maximize Eφ(p), since
that will maximize V (φ, call) with V (φ, fold ) held fixed. This is equivalent to maximizing
Epφ(p) out of the class of φ such that Eφ(p) is held fixed equal to some number α. By the
Neyman-Pearson Lemma, we may find such a φ of the form

φα(p) =

{ 1 if p > k
γ if p = k
0 if p < k

where k and γ are chosen so that Eφ(p) = α. Player I may restrict his choice of strategy to
the class of φα. This shows that Player I will bet with cards having a high value of p and
check with cards having a low value of p. Any randomization will occur only for those p on
the boundary between betting and checking. If the distribution function F is continuous,
Player I will have an optimal pure strategy. Note that both V (φ, fold) and V (φ, call) are
increased by putting φ(p) = 1 for p ≥ 1/2. Therefore in the model, Player I should always
bet if his probability of win is at least 1/2.

Let g(α) = Epφα(p). Then g(α) is continuous, concave and increasing on [0, 1]. It is
apparent that V (φα, fold) is a nondecreasing convex function of α in [0,1], while V (φα, call)
is concave and increasing in α as long as k > 1/2 and nonincreasing thereafter. Moreover,
these functions are equal at α = 0 and there is at most one other value of α in (0, 1] at
which they are equal.
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From these observations, we may write down the solution of the game. The form of
the optimal strategies differs in three different regions of the space of parameters.

Case 1. µ ≥ (2a + b)/(2a + 2b). In this case, V (φα, fold) ≤ V (φα, call) for all values of α.
Therefore, folding is optimal for II, betting always is optimal for I and the value is a.

Let α0 = P(p ≥ 1/2) and if α0 > 0, let µ0 = E(p|p > 1/2) = Epφα0(p)/α0. Note that
V (φα, call) takes on its maximum value at α = α0 and that φα0 is the indicator of the set
{p ≥ 1/2}. Also note that µ0 ≥ µ.

Case 2. α0 = 0, or α0 > 0 and µ0 ≤ (2a + b)/(2a + 2b). In this case, V (φα0 , call) ≤
V (φα0 , fold), so that the maximum of the minimum of these two functions occurs at α0.
Therefore, calling is optimal for II, and φα0 is optimal for I. If α0 = 0, then V (φα, call ) is
decreasing in α, so that checking always is optimal for I. Otherwise, the strategy that bets
if and only if p ≥ 1/2 is optimal for I. The value is α0(2bµ0 − 1) + a(2µ − 1).

The last case is the main case, requiring mixed strategies for Player II. The minimax
value of α occurs at the point of intersection of V (φα, fold) and V (φα, call), call it α1.
Then α1 satisfies the equation g(α1)/α1 = (2a + b)/(2a + 2b).

Case 3. µ < (2a + b)/(2a + 2b) < µ0. In this case, the maximin occurs at α1. Therefore,
mixing fold and call in the proportions b − 2bg′(α1) : 2a − 2ag′(α1) is optimal for II, and
φα1 is optimal for I. (Here g′(α) represents any value between the left derivative and the
right derivative at α.) The value is 2a(α1 − g(α1)) + a(2µ − 1).

The Binary Case.

As an illustration, consider the case where F gives mass to only two points. Suppose
F gives mass π to pH and mass 1 − π to pL, where pL < pH . Thus, Player I receives one
of two cards, a high card giving him probability pH of winning, and a low card giving him
probability pL of winning. The probability he receives a high card is 0 < π < 1. The
probability that I wins with the card he receives is µ = πpH + (1 − π)pL. Basic Endgame
occurs when pL = 0, pH = 1, and µ = π = P . We let Q0 = (2a + b)/(2a + 2b).

If both pL and pH are in [0, 1/2], then it is optimal for I to check with either card and
it is optimal for II to call (Case 2 with α0 = 0). The value is a(2µ − 1).

If both pL and pH are in [1/2, 1], then α0 = P(p ≥ 1/2) = 1 and it is optimal for I to
bet with either card. It is optimal for II to fold if µ ≤ Q0 (Case 1, value = a) and to call
if µ ≥ Q0 (Case 2, value = (a + b)(2µ − 1)).

Suppose now that pL < 1/2 < pH . Then α0 = π and µ0 = E(p|p > 1/2) = pH .

If Q0 ≤ µ, then it is optimal for II to fold and for I to bet with either card (Case
1, value = a). If pH ≤ Q0, then it is optimal for II to call and it is optimal for I to
bet with a high card and check with a low card (Case 2 with 0 < α0 < 1 and value
= a(2µ − 1) + bπ(2pH − 1)).

There remains to consider µ < Q0 < pH (Case 3). This requires computation of φα
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and the payoff functions. The strategies φα are easily found.

For α ≤ π, φα(p) =
{

α/π if p = pH

0 if p = pL

For α ≥ π, φα(p) =
{

1 if p = pH

(α − π)/(1 − π) if p = pL

From this we may find g(α) = Epφα(p).

g(α) =
{

αpH for α ≤ π
πpH + (α − π)pL for α ≥ π

and from this we may find the expected payoffs.

V (φα, fold ) = 2a(α − g(α)) + a(2µ − 1)
V (φα, call ) = b(2g(α) − α) + a(2µ − 1).

The value, α1, at which these intersect is that value of α in [π, 1] such that 2a(α− g(α)) =
b(2g(α) − α). This reduces to

α1 =
pH − pL

Q0 − pL
π.

I’s optimal strategy is φα1 . This strategy calls for betting with a high card and randomizing
with a low card, betting w.p. (α1−π)/(1−π) and checking otherwise. The optimal strategy
for Player II is to mix calling and folding in proportions |sc| : sf , where sc and sf are the
slopes at α1 of the payoff functions for calling and folding. Since s1 = 2a(1 − pL) and
s2 = b(2pL − 1), we have that II should call with probability

b(1 − 2pl)
(2a + b) − (2a + 2b)pl

=
1 − Q0

Q0

1 − 2pL

1 − pL

and fold otherwise. The value is

2a(α1 − g(α1)) + a(2µ − 1) = 2aπ
(pH − pL)(1 −Q0)

Q0 − pL
+ a(2µ − 1).

It is interesting to note that II’s optimal strategy in Case 3 (the general case) does
not depend on π or pH . Player II’s strategy depends only on Q0 and pL. It should also be
noted that in all cases Player I’s optimal strategy does not randomize with a high card.
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