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IN LINEAR STRUCTURAL RELATIONS

BY
THOMAS FERGUSON

1. Introduction. This paper is concerned with the linearity of the multiple re-
gression of one variable on several others when the variables are connected by a
linear structural relation. Extensions are made in several directions of certain results
of other authors, namely, H. V. Allen [1], E. Fix [4], C. R. Rao [16], and D. V.
Lindley [13]. Also a relation to identifiability is considered.

The problem of existence of a linear regression in a linear structural relation was
first proposed in 1936 by Ragnar Frisch in a form which may be stated as follows.
Let X, and X, be the observable random variables of a linear structural relation,

Xo = at + 0
Xi=mé+m

where £, 7o and 7 are independent random variables, and a, and a; are unknown
constants. What are necessary and sufficient conditions on the distributions of the
variables £, 7o, and 7. in order that the regression of X, on X; and also that of X; on
X be linear for all values of the constants a, and a,?

Miss Allen found, under the assumption of the existence of all moments of ¢ and
n1, that a necessary and sufficient condition for the regression of X; on X; to be
linear whatever be the value of a; is that both £ and 7, be normal random variables.

Miss Fix later completely solved the problem of Frisch. Her result, which con-
tains that of Miss Allen, avoids the assumption of the existence of any moments
other than the first, whose existence is implicit in Frisch’s formulation of the prob-
lem, and requires the regression to be linear only for values of a; in an interval how-
ever small. For the sake of completeness we shall state this result in its entirety.
We use ¢r({) to denote the characteristic function of a random variable Y'; that is,

(1.1)

ér(t) = f ” e™dP[Y < y] . Without loss of generality we assume that Ef = En,

= 0.
Miss Fix’s THEOREM. In order that the regression of X, with ay % 0 on X, be a
linear function of X whatever be the value of ay in some interval (ci, ¢s), it is necessary

and sufficient that
b () = o | — (u + J%) m”]

- w2 (oo 20 ]

a1
where 1< v £ 2, u> 0,k> 0and v cos ;—"'I < usin 722 and where v = 0 should

the interval (c1, ¢2) contain the origin.

This paper was prepared with the support of the Office of Ordnance Research, United States
Army, under Contract DA-04-200-ORD-171.
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Random variables with a characteristic function of the above form are called
stable, and symmetric stable if they have no imaginary part (that is, if v = 0).

If the second moment of either £ or 1, is assumed to exist so that the second deriva-
tive of the characteristic function exists at the origin, one easily sees that » must
equal 2; hence one obtains the easy corollary that in this case both £ and 7 must be
normal variables. Thus Miss Fix’s theorem implies the result of Miss Allen. The
extension of this theorem and its corollary, requiring the regression to be linear for
only two values of a;, will be found in section 3.

In section 4 is found an extension in the dimensionality of the linear structural
relation. It is assumed that there are n + 1 random variables, X,, X1, - - -, X, each
of which depends linearly on s random variables &, « - -, & and an independent
error term. Necessary and sufficient conditions are found in order that the multiple
regression of X on Xj, - - -, X, be linear irrespective of the values of the constants
which appear in the linear forms. Other interesting remarks in connection with this
problem may be found in the above-mentioned paper of Lindley. Using the above
structure with s = 1 and n > 1, section 5 contains a theorem to the effect that if the
regression is linear for just one set of values of the constants, then all the variables
concerned must be normal. Next follows a theorem on linear regression when the
error terms follow a joint stable distribution.

Finally, implications of these theorems on identifiability in a linear structural
relation are considered, and two theorems on identifiability are proved. There is an
indication given that linearity of regression and identifiability of the slope param-
eter in a linear structural relation are contradictory assumptions. Thus doubt is
cast on the validity of certain methods used in factor analysis.

2. Preliminary lemmas. Let X,, X1, - - -, X, be the observable random variables
and &, - - -, & the latent random variables of a linear structural relation. Explicitly,
let

Xo=ankr+ - -+ + Goske + 1m0

Xi=anbi+ - - +auds +m
@.1)

Xn = anlEl + st + ansgs +7In

where 7o, 11, + - -, 7. are random variables, usually called the error terms, and the
asz are unknown constants. Upon denoting the vectors (X, Xi, - - -, X,),
(&, - - +, &) and (no, 1, * + -, 7a) by X', &, and o’ respectively, and using 4 to denote
the (n + 1) X s matrix of constants, equations (2.1) may be written simply as

X =At+n.
Restating the problem, we are to find necessary and sufficient conditions on the

distributions of £ and 7 in order that for a certain number of values of the matrix 4,
there exist numbers b, - - -, by, and ¢ depending on 4 such that

2.2) E(Xo| Xy, - -, Xo) =biXi+ - - - 4+ baXn +e.
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For this and the following three sections, the four assumptions below on the dis-
tributions of £ and n will be made tacitly.

Assumprion 1. To conform to the practical case found in factor analysis applica-
tions in psychology and economics, it is assumed that the vector £ is completely
independent of the vector 7.

AssumpTIoN 2. It is assumed that the first moments of both ¢ and » exist. Without
loss of generality we then assume E(¢) = E(q) = 0. Thus ¢ in equation (2.2) must
be equal to zero.

The role of this assumption is to insure the existence of the regression of X, on
Xy, - - -, X. It will also permit us to take one derivative of the characteristic
functions of £ and .

Assumprion 3. It is assumed that the components of the vector 5 are com-
pletely independent among themselves.

AssumpTion 4. It is assumed that each &, k = 1, - - -, s and at least one of the »;
j =1, - - -, nare nondegenerate. We will take n; to be nondegenerate.

In section 6, we will treat the case n = 1, s = 1, where the components of the
error term are not necessarily independent, but are known to follow a joint stable
distribution.

The proofs of the theorems in the next sections use as a starting point a very
simple necessary and sufficient condition for linear regression, involving the use of a
differential equation connecting the characteristic functions of the variables con-
cerned. This is contained in the following lemma which corresponds to lemma 2 in

Miss Fix’s paper.

Throughout we shall use ¢v,,....r, (&, - * *, tn) to denote the joint characteristic
function of m random variables Y3, - - -, Y and ¢y,...7. (&, - + -, ta) to denote
log ¢y,...va(ti " * ) tm). AlSO ¥r,...7y, ... ¥a(t, * * *, tm) Will be used to represent

a/atk[\llyl :::: Y,,.(tl, Y tm)]
LemMa 1. The following three statements are equivalent.

1) EXo|Xy, - -, Xn) = biXy + bXa + - - - + 0:.X, a.e.

[¢) id i)
2 a_t,,¢X°'X1""'x"(t°’ ty c t oty t)|g=0 = h‘::{ bha—hﬁxl,---.xn(tl, c eyt

3) kg; \[/El'...,g,;,...,ga(‘lv_: tiaj, - - -,th,a,-g) (aOk - ’; bha;.k>

= 2 baym,(ts) .
h=1
It should be noted that (1) and (2) are equivalent irrespective of the relation be-
tween the variables X,, X, - - -, X, provided that all first moments exist. State-

ment (3) is made in the sense that if both sides exist, they are equal. Of course,
both sides do exist in a neighborhood of the origin where all the characteristic func-
tions involved are not zero. :

Proof. That statement (2) implies (3) is proved by rewriting the structural rela-
tion (2.1) in terms of characteristic functions and applying laborious computation
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and assumptions 1, 2, and 3. The reverse implication follows by retracing the steps
involved and noting that whenever one side of (3) does not exist, then both sides
of (2) are zero.

To see that (1) implies (2) we compute the left-hand side of (2).

-ZE [expi 3 tJ-XJ-:|
0

tg=0 ~ dto

ad
e $rume il )

=F [ZXO . expz E th,'] =F [iE(Xo[Xl, : ) Xn) - exp i Z thj:I'
1 1

The right-hand side of (2) is simply
> bE I:z'X;, cexpi z,-X,-] =E ’:z (Z b,,X,,) cexpi t,-X,-:I .
h=1 1 1 1

Hence (1) obviously implies (2).
The reverse implication follows by rewriting (2)

E [iE’(Xo|X1, c -, X)) - expi thj] =E l:z (Z b,,X,,)-exp iEt,—X,-]
1 1 1

or equivalently,

E[{E(XolX]_, L X,,) - Z th}.} . expz' Z thj] =0.
1 1

Hence from the unicity of the Fourier-Stieltjes transform in »-dimensions we have

E(Xo]Xl, tt oy, Xn) - Z bXn =20 a.e.
1
It is well known that a sufficient condition for the regression of Xoon Xj, - - -, X,
to be linear is that X, X, - - -, X, be multivariate normal. A proof using densities

is found in Cramér [2, p. 314 ]. An alternative method of proof which will work even
if the distribution does not admit a density (the so-called singular normal) may be
found using lemma 1. Hence we see that a sufficient condition for the regression of
Xoon Xy, - - -, X, to be linear is that both £ and 5 be multivariate normal. This fact
will be used without explicit mention.

Certain properties of the stable distributions and in particular the multivariate
stable distributions will be used frequently in the sequel. It will be convenient here
to use a form of the stable law found in Gnedenko and Kolmogorov [6, p. 164 ]. The
log of the characteristic function of every stable law admits the representation

W) = iyt — c[t]”{l + 48 |—I;Iw(t, v)}

where », 8, v, and c are real constants, 0< » £ 2, —1 < g < 1, y arbitrary, ¢ > 0,
and where
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tan% |

"-’(t: V) =
2 .
- log |¢| if v=1.

The parameter v is called the characteristic exponent. For a stable law with
characteristic exponent », the absolute moments of all orders less than » are finite,
and if » ¢ 2, the absolute moments of all orders greater than » are infinite. The
stable law with » = 2 is easily seen to be the normal. When the parameter 3 is zero,
the stable law becomes symmetric about .

A well-known necessary and sufficient condition for random variables ¥y, - - +, ¥,
to have a multivariate normal distribution is that every linear combination of them
be normal. (See the note of M. Loéve in Lévy [12, p. 337 ].) It is most easily proved
using characteristic functions. It may also be shown that a necessary and sufficient
condition for Y7, - - -, ¥, to be multivariate stable in the sense of Lévy [11, p. 221 ]
is that every linear combination of the variables be stable. We shall use this as a
definition of a multivariate stable law, and in particular, a symmetric multivariate
stable law is defined to be one for which every linear combination of the variables
is symmetric stable.

The following lemma gives a form of multivariate stable laws which will be used
later in the paper. It should be noted that not every function of this form will be
the log of a characteristic function. An exact representation for multivariate stable
laws using an integral form may be found in Lévy [11].

Lemma 2. Random variables Yy, - - -, Y, have a multivariate stable distribution if
and only if the logarithm of their joint characteristic function has the form

1//y1,..._yn(t1, vy, tn)

= i'Y(tb ) tn) - C(tly ) t,.){l + iﬁ(th Y tﬂ)w(lJ y)}
where
(l) C(tfu, T tnu) = [u[yc(tl) ] tﬂ) c>0
() b, - - o, ) = B, s k) ~158=1
(iil) V(tlu; ) tnu) = 'Y(tly Tty tn)u
y U
—clty, + + 5 B, - - -, t)|ul ] [w(u, ») — w1, )] .
This distribution 1is symmetric multivariate stable if and only if B(t1, - + -+, t.) = 0.
Proof. To simplify the writing we use vector notation. Y’ will denote the vector
of variables (Y1, - - -, Y,), a’ a vector of constants, and ¢ an arbitrary constant.

Suppose the condition is satisfied. Then
Yo'y () = ¥r(at) = ivat) — c(ad){1 + (a1, »)}
= 1y(a)t — c(a)[t|” {1 + il_zl Bla)u(t, V)}



148 University of California Publications in Statistics

which for every vector a is the log of the characteristic function of a stable distribu-

tion. If 8 = 0, then a’Y must be symmetric stable.
On the other hand, suppose Y is multivariate stable. Then for every vector a,

2.3) mwo=mm—dmwm%+m@ﬁp@mﬁ.
Putting t = 1, We see that
24) ¥r(a) = iv(a) — c(a) {1 + iB(a)w(1, »(a))} .

To complete the proof we will show that »(a) is a constant on the set E = {a : c{a)
# 0}, and that the functions ¢, 8, and v have the properties claimed.

Let Y, be an n-dimensional random vector with the same distribution as ¥ but
independent of ¥. Then ¥ — Y, is multivariate stable and

(2.5) Yr-ry(at) = —2c(@)|t]’ = —2c(at) .

Thus ¢(a) is a continuous function of a, and »(a) must be a continuous function of ¢

on the open set E. It will be shown that »(a) is constant on a dense set of the n-

dimensional space; hence »(a) would be constant on E. In fact, we will show there

are at most n — 1 independent vectors b for which »(b) > min »(a). Suppose there
a

are n independent vectors by, - - -, b, and a vector a for which »(a) < min »(b;). Let

7
B = (by, - - -, bs) be the nonsingular matrix composed of the b;. There exists a
vector d such that Bd = a; hence 'Y = d’'B'Y.

@'Y = dy(b1Y) + do(dsY) + « - - + du(bLY) .

An application of Minkowski’s inequality will then give »(a) = min »(b;) which is a
contradiction. Hence, »(a) is constant. i

Equation (2.5) immediately gives (i). We may compute equation (2.4) at the
point at and equate to (2.3). Equating the imaginary parts of the result gives

v 4
v(at) = v(a)t — c(a)|¢| {B(a) mw(t, v) — Blate(l, V)} .
Hence (iii) will follow when we show (ii). We may expand v(atits) in two ways, first

considering #f; as the constant multiplier and second considering # and ¢, separately
and applying the above formula each time. Equating the results gives

mwﬁwmo—mmwuw

t2|y 1312) ts
- J? {‘3(") Ty] ©Clates ) = Blats) oy ol v)} :

By considering the cases » = 1 and v # 1 separately, (ii) follows easily. Finally, if
a’Y is symmetric stable, then 8(a) = 0.
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There are several remarks to be made about lemma 2. First, if » ¢ 1 then w(u, v)
= «(1, ») so that condition (iii) becomes simply (o, - - -, tu) = (b, - - -, )u.
It may be shown further by centering the variables Y; and noting that linear com-
binations of centered variables must be centered, that (iii) may be replaced by

(i) v, - - o, ) = 2ot

for some arbitrary real constants v;. The same is true for symmetric variables
whether » = 1 or not. Secondly, if » = 1, w(1, ») = 0 so that the characteristic func-
tion may be written in an obviously simpler form.

Functions which satisfy equation (i) of the lemma are called positive homo-
geneous of degree ». It should be noted that by lemma 2, variables Y5, - - -, ¥, have
a multivariate normal distribution if and only if the log of their characteristic func-
tion is of the form

¢Y1."-.Yn(t1: Tty tﬂ) = ZZI 'th.i - c(tl’ Tt tn) ]
where c(t,, - - -, t.) is a homogeneous function of degree 2.

3. Reduction in the number of constants for which the regression is assumed
linear. In this section we treat a modification of the problem of Ragnar Frisch,
requiring the regression to be linear for only two values of the constant a1, and
finding as a result that both £ and 7, must be semistable. It is assumed that the linear
structure under consideration has the special form

Xo = aof + no
(1.1)
Xi=wmfE+m

and that assumptions 1 to 4 are satisfied. To avoid cases where the regression is
trivially linear we assume in the theorem and corollaries to follow that none of the
constants ao, a1, primed or not, are zero.

THEOREM 1. In order that the regression of X, on X be linear Jor two pairs of values
of the constants (ay, @) and (ao', ar'), with |ay| # |a:|, 5t is necessary and suffictent
that either

() both & and n; be normal variables or

(i) (0 = f_w € — 1 — {tz)dN(z)
Yo, (1) = f_ ) € — 1 — itz)dM ()

where
M(x)=KJ‘L’lN(£>, =0, K>0
ax ai
and
7 'Q:(log 7) , for >0
N(@) =

|2|7"Q:(log [z]) , for <0
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where Q, and Q. are periodic functions such that N (z) (hence M (x)} 1s nondecreasing in
both (— e, 0) and (0, »),and 1< »< 2. In the case ¢ = ai/a’ > 0,Q: and Q2 are
both of period log q; in the case ¢ < 0, @ and Qs are of period 2 log |g| and Qu(y +

log [¢]) = Qx(y). _
Proof. In the casen = 1, s = 1, condition (3) of lemma 1 becomes

Vitar)(ao — bar) = by (D) .

Neither b nor (@, — ba,) may be zero without contradicting nondegeneracy. By
integrating we have

3.1) vatta)) @ =09 _

ba1
Using the fact that the absolute value of a characteristic function is bounded by one
we see that the constant K = (ao — bay)/ba; must be positive. This equation may be
deduced once again using the primed structure, and upon equating the two expres-
sions and letting K’ = (ay’ — b'ay’)/b'ay’ > 0 we find

a1y _ K__’
(3.2) lﬁt(t a—{) = & %0,

or alternatively,

3.3) vi(tq) = lgl’¥e(D) .

This equation holds at least in a neighborhood of the origin, but since ¢ # 1 it
obviously holds everywhere on the real line.

Laws with characteristic functions whose logs satisfy this equation are called
semistable by Lévy [11, p. 204 ]. Characteristic functions of such laws for ¢ positive
and unequal to one are shown to be representable in the form

(3.4) Ye(t) = [—Po(log l¢]) + iJ%Pl(log ltl)] el ,

where 0 < » < 2 and P, and P; are continuous real functions periodic of period log g.
The case P, = P; = 0is ruled out by nondegeneracy; so that in order for the deriva-
tive of ¥¢(f) to exist at the origin it is necessary that » > 1. Lévy uses the fact
that £ must be infinitely divisible to derive the exact form of the semistable law given
in the theorem for £ when g is positive. Using the unicity of the representation of an
infinitely divisible law (see [6, p. 801), the formula for M follows easily from equa-
tion (3.1).
If ¢ is negative, we note that

Ye(te®) = |g|¥e(t) = ()"¥:(f)

so that we get the same representation as before, but now @ and @, are periodic
functions of period 2 log | ¢|. The final condition follows easily from equation (3.1).

In order to prove sufficiency, one merely checks that equations (3.1) and (3.2)
are satisfied.
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If the random variable ¢ (similarly #;) has a finite second moment, the second
derivative of ¥¢(t) must exist at the origin. Equation (3.4) will then give us that
v = 2. We have proved the following corollary.

CoRrOLLARY 1. In order that the regression of X, on X: be linear for two pairs of
values of the constants (as, 1) and (ay’, ai’) with |a:| # |a’|, and that the second mo-
ment of etther & or n1 exist, it is necessary and sufiicient that both & and n, be normal
variables.

To complete the picture we shall prove a second corollary, assuming the regression
to be linear for three pairs of values of the constants satisfying a certain incommen-
surability relation. It is easily seen that this result contains Miss Fix’s theorem.

CoROLLARY 2. In order that the regression of X, on X1 be linear for three pairs of
values of the constants (ay, a1) (ay’, ai’) and (a,”’, ai’’) such that

log |a:| — log [a;]
III

log |a]| — log |a;

be an irrational number, it is necessary and sufficient that

welt) = —(u + i Jj—’) 14’

‘l’ﬂl(t) = —K (u + w J%[ _|Z_i_|_) Itlv ,

where 1< v < 2,u> 0,K > 0and |v cos (mv/2)| < usin (mv/2) and wherev = 0
unless ai, a’ and a,"’ are all of the same sign.

Proof. Theorem 1 is applied twice to the form of semistable laws found in equa-
tion (3.4). We see that P, and P; are continuous and periodic both of periods
2 log |ai/ay'| and 2 log |a@y’/a,”’|. Since these periods are incommensurable, it
follows that Py and P, are constants. Hence the formula given for ¢:(¢). The formula
given for ¥ (t) follows easily from equation (3.1). The conditions u > 0, K > 0, and
lv cos (wv/2)| = wsin (7v/2) are necessary in order that y¢(f) and ¥ (f) represent
logs of characteristic functions. (See Lévy [11, pp. 94-96 ].) The sufficiency follows
of course from Miss Fix’s theorem.

With regard to the preceding corollary, the author is indebted to an oral com-
munication of Dr. LeCam who, however, supported the validity of the conclusion
by arguments different from those presented here.

For the regression of X, on X, to be linear for only one value of (a,, ai), J. F.
Kenney [8 ] has found that it is sufficient that a;£ and 9, have the same distribution
regardless of its form. This may be seen from equation (3.1) with b = a,/2a;. This
indicates the difficulty of finding necessary and sufficient conditions in this case.

4, Extension in the dimensionality of the structure. Consider now the general
linear structural relation found in section 2, equations (2.1). It is proposed to find
necessary and sufficient conditions for the regression of X, on Xy, - - -, X, to be
linear irrespective of the values of the constants in the matrix A. Corollary 2 of
section 3 is used to obtain a necessary condition which, as will be seen, is almost
good enough for sufficiency.
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TaEOREM 2. In order that the regression of X, on X, - - -, X, be a linear function
of Xs, - -+, Xa trrespective of the values of the constants a, it is necessary that the
logarithms of the characteristic functions of &, - - -, & and n, through 1, be representable
in the form
’/’El."',f,(tlx ) tﬂ) = —g(tli Tt te)
‘I’n,(t) = —K,lt", J=1-:4mn,
where g(ty, - - -, &) is a posilive homogeneous real function of degree v, 1 < » < 2,
K;z0forj=2,---,nand K;> 0.
Proof. We may choose aw, & = 1, - - +, s in equations (2.1) to make an& + -
+ aos; nondegenerate. For an arbitrary number r we choose a1, = rape, £ = 1, - - -,
s,andapp=0,7=2,- - -,m, k=1, - - s Our structure (2.1) has become

Xy = (am& + - +¢10aEa) + 70
Xy =r(ank + « - - + apts) +m
XJ'=771'; j=21"':n-

Since X, and X are independent of X, - - «, Xa, E(Xo| X1) = E(Xo| Xy, - - -, X0n).
We may apply corollary 2 or more simply Miss Fix’s theorem to show that a neces-
sary condition of the linearity of regression irrespective of the value of r, — o < 7
< =,isthat

'l’“0151+"‘+“o,5.(t) = —g(ao, - - -, aoa)|t|”

¥a,() = —Kilt]”

whereg> 0,K;> 0,and 1< » £ 2.
For those values of the ay for which anf, + + + - + ao.t, is degenerate, g(ao, « - ,

ays) is defined to be zero. Hence Vagyty+---+agt,() being defined for all values of

Qo1, * ¢+, Gos, WE have
Vepeer G0ty G0 = Vaoytreosaqets(l) = —g(ass, - - -, @0s) -
That g is positive homogeneous of degree », follows from the equalities
—gllao, - - -, a00) = Yiy,oe g (a0, © ¢ 0, 1302) = Yagytreeeovag,t,(0)

= _[t,yg(anh Yy aOa) .

Furthermore, it is easy to see that if any other 7, say »;, is nondegenerate, the
log of its characteristic function may be written in the form given in the theorem
with K;> 0; but we may write the degenerate law in this form with K; = 0.

It is immediately seen by an application of lemma 2 that the distribution of
&, - - -, & must be symmetric multivariate stable. In particular, we have proved
that if a second moment of any £;, or of any one of the nondegenerate 7; is assumed
to exist, then the necessary and sufficient condition for the regression of X, on
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X,, - - -, X, to be linear is that each 5, be normal and &, - - -, be multivariate
normal.

Now we shall find necessary and sufficient conditions for the regression to be
linear. We will see that in the case n = 1 the conditions of theorem 2 are sufficient
also, and in the case n > 1, except for a very singular stable distribution the normal
is the only distribution that will allow a linear regression for all values of the con-
stants.

TrEOREM 3. In the case n = 1, a necessary and sufficient condition that the regression
of X, on X, be linear irrespective of the values of the constants aj, 7s that

'PEl."'.E,(tly R ta) = _g(tl; Yy ta)
'l’nl(t) = _Kltl v:

where g(ty, + + -, ts) %S a positive homogeneous real function of degree v, 1 < v £ 2,
and K> 0.

Proof. The necessity was proved in thereom 2. To prove sufficiency it must be
shown that for all values of the a;z, there exists a solution for b independent of the
value of ¢ in equation (3) of lemma 1 withn = 1.

(4’1) k-—Zl 1/151,...,51;,...,56(15(1:11, L ta“)(ank and bau,) = b\b,l,l(t) .
Since &, - - -, & all possess finite first moments, all first partial derivatives of
g(ty, - « -, t;) must exist.

‘l’Ep"'.fk'.'--.E,(tl; ) tS) = '—gk(tli Y t,,)

t 14
o = —g 0
where gi(t1, - + -, &) = (3/0t)g(ty, - - -, t.). Substitution into equation (4.1) yields

4.2) kg [—g(tan, -+ -, tars)](@ox — baw) = b [—Kv J_ttl_':l -

For differentiable positively homogeneous functions of degree » we have

(4.3) gi(tu, = - -, tug) = I_%_” gr(us, + - -, u) -

This is true since
ltlvgk(ul o o . u) - i ltlyg(ul « . u) p— _a_g(tul e e . tu)
] ) WUsg auk ] y Ug Buk 3 ) 8

= tgp(tus, - - -, tuy) .

Thus — |¢]?/¢ may be canceled from both sides of equation (4.2).

8 8 a
E ge(@11, - - “y Q1)00r = b [Z (437" a_ g(au, C e, M) + Kll:l .
k=1 k=1 1k
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It remains to be shown that the coefficient of b is never zero. This is done using
Euler’s theorem for a homogeneous function of degree », that is,

2 a
2 an EPEAG IR a1) = vg(aw, - - -, a1,),
k=1 A1k
s0 that the coefficient of bis v [g(au, - - *, @1,) + K ]. This is positive since g = 0 by

a well-known property of characteristic functions and K > 0 and » > 1 by hypothe-
sis.
TaEOREM 4. In the case n > 1, a necessary and sufficient condition for the regression

of Xoon Xy, - + -, X, to be linear in Xy, + - -, X, trrespective of the values of the con-
stants a; 1s that either
(1) both &, - - -, & be multivariate normal and u, through 7, be normal, or

(ii) 72 through 7, be degenerate and
'pfl,"'.f,,(tl; Tty ta) = _Ikltl + s + kutslr

‘I’nl(t) = —K[tlv )

where1< » < 2,k %0, - - -, k. #0,and K > 0.

Remark. The condition that y,...;;(h, - « +, &) = — |kuts + + - - + kala|?, k; 5 0,
j =1, - -, s may be replaced by the condition that each £ be a nonzero multiple
of a fixed symmetric stable random variable ¢ with characteristic function ¢¢(f)
= exp(-[t *). This follows since

ngc,-z,. ":I = ¢:(Xkst) = E(exp iy, tikid)

¢51."'.53(t1: Yy ta) = l:exp -

i=1
= Prgt,eebytltyy, 0 0y b0)

and conversely if each ¢&; = k;£ then
bttty - -, 1) =E [expiz t,—k,-g] = exp —[ > t,k,-|".

Proof of necessity. We begin where theorem 2 leaves off. We must show that either
v = 2 in that theorem in which case &, - - -, & will be multivariate normal from
lemma 2, or if 1 < »< 2,then K; = 0forj =2,:-:-,nand glts,: -+, &) =
|k1tl + ct + kstzlv-

First it will be proved that if some K; for j = 2 is positive, then » must be equal
to two. Suppose K, > 0. With an = an = @ = 1 and all the rest of the a;x = 0,
equation (3) of lemma 1 becomes the following necessary condition for linear re-
gression

Vet + t)(1 — by — by) = h2=1 Bav (4) -

There must exist a solution for the b;, 7 = 2, - - -, n which is independent of the
tp,7=1,2 -, nSofixt;=0forj=3,4,---,n

4.4) Vet 4 1)L — by — by) = buy, (82) + bay(ts) -
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Putting alternately ¢, = 0 and £, = 0, we must have
Yl + B)(1 — b — bs) = $5(t)A — b = ba) + Ye ()L — b — by) .

Suppose 1 — b; — b, = 0; then equation (4.4) because of the nondegeneracy of
both 7, and 7; would imply that b; = 0 and b, = 0. Hence 1 — b; — b; = 1. This
contradiction permits us to cancel (1 — by — by).

Vet 4 1) = vi(t) + v t) .

Since y, (f) must be continuous, this equation implies that ¥4 (£) is a linear function
of ¢ and hence that ¥y, (¢) is a quadratic. Thus & and hence n; and 5. must be normal,

ile,v=2. 7
Hence we know that if n> land 1< »< 2,then K; = 0forj = 2, - - -, n. We
must show that in this case it is also necessary that g(41, - - -,t) = |kih + - - - +

k.t,| . The result is obvious for s = 1 since ¢ is positive homogeneous of degree ». It
will next be proved for s = 2, and then extended to arbitrary s.
Assume s = 2. Since K; = 0,7 = 2, - - -, n, it is necessary by theorem 2 that

Vet 8) = —g(t, t2)
Yn () = —Ki[t]”

‘Pﬂj(i):()) j=2:"';n‘

We may take derivatives with respect to ¢ and ¢,, and put them in condition (3)
of lemma 1, withay = Oforj =3, - -,nandalk = 1, 2.

4.5) g1(f1611 + faG21, a1z + fa@20)(@01 — b1811 — beGey)
[6)"
+ gz(t1a11 + tas1, hais + tzazz)(aoz — biays — bzazz) = b Kw t

Restrict the values of the a;’s further so that axn # 0, as; £ 0 and

G Q12
A= = Qulzs — 1202 # 0.
G21 Q22
Let
Vi = tan + tan
Vo = tha1z + teass
then

1
iy = A [@22 V1 — a1 V]

1
ta = "A" [a11V2 - a12V1] .
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Equation (4.5) becomes

lazzvl - azlvzlv
a2 Vi — aaV,

(4.6) g1(V1, Vo)ar + g2(Vi, Va)az=

where

a7

ap = K_w A (001 — bian — bzan)

4.7)

1 JAP
oy = K—ly JA—I (a02 — bia1s — bza22) .

Since A # 0, taking arbitrary ¢ and ¢, is equivalent to taking arbitrary Vi and V..

Take Vi = 0and V, = 1;then g:(0, 1)y + ¢2(0, D)y = — Z:i by
(4.8)

Take V, = 1 and V, = 0; then (1, O)as + ga(1, O)ay = 2215,
Let 22
7:(0,1) ¢5(0,1)

9:1(1,0) g-(1,0)

A = = g1(0, Dg2(1, 0) — g2(0, 1)g:(1, 0) .

It will now be shown that A; = 0. Suppose A; 5 0, then solving equations (4.8)
w = = il g, 0 lanl’ g0, 1y lonl]
1 Q21 Q22
ap = Z—l [91(1, 0) la]” + 000, 1) Jﬂz"‘] .
1 Q21 Q22

If b1 = (O then a] = g = 0, so that from (4:7), dop = b2(121 and Qo2 = bzazz. Hence by
making the additional restriction that

(4.9)

Qo1 Qo2
#0,

Qo1 Q22
it is necessary that b; 5 0.

Equations (4.9) may be substituted into equation (4.6) with V; = V; = 1, and
b, may be canceled.

(4.10) [92(1, 1)g:(0, 1) — ga(1, 1)g(0, 1)] l%[

14
Qg — Q21
A ’

H

— [g(1, Dga(1, 0) — lanl”
[g1(1, 1ga(1, 0) — g2(1, Da(1, 0)] - PR
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the identity holding in all values of as, and a,; different from zero. Take successively
the limit as az — 0 and as aq; — 0.

g2(1, 1)g1(0, 1) — g1(1, 1)g2(0, 1) = A,
g1(1, 1)g2(1,0) — g2(1, 1)g1(1,0) = A,.

Equation (4.10) with A; ¢ 0 canceled becomes

lazzly _ lazlly — ]azz — a2l|p
Q22 Q21 Qs — Q21

This can happen only if v = 2; contradiction. Hence A; = 0.

It will now be shown that it is necessary that b; = 0. Since ¢:(1, 0) = d/dt log
é¢,(8) | :=1 and £ is stable, the nondegeneracy of £ implies that gi(1, 0)  0; similarly,
g2(0, 1) # 0. Consequently, since A; = 0, g1(0, 1) 5 0 and g»(1, 0) # 0. Therefore,
let

, = 20, 1) _ 0.1, 0)
9200, 1) ¢2(1,0)°

Equations (4.8) become

910, Dlres + a] = — 12221,

g2(1, O)[ras + o] = JZ—::'— by .

Therefore,

a1, 0 9y, = g0, 1y lazly
Q21 Q22
Hence, except possibly for those values of a2 and as, such that

Lol pt, 0+ 122 0,1y - 0,
21 Q22

b; must be equal to zero.
Thus the necessary condition (4.6) becomes

(4.11) g1(Vy, Vo)au + g2(Vy, Vo)as V 0,

ViV
where

1 Al
A

ay = (ao1 - b2a21)

Kw
A v
ag = KLW JKL (@02 — bzazz) .
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In view of the restriction
Qo1 Qo2
# 0,
Qg1 Qa2

not both «; and a3 can be zero. It is necessary that g be differentiable and so we are
looking for the most general differentiable solution of the partial differential equa-
tion (4.11). An obvious solution is g(Vi, Vs) = a2Vi — a1V, Hence a large class of
solutions is given by g(Vi, V2) = f (a2V1 — a1V2) where f is an arbitrary differen-
tiable function. To see that this is the most general solution, let f (V,, V2) be any
solution. Suppose without loss of generality that c; ¥ 0. Then let

U = a2V1 —aV,
Ug = V1.

The determinant is not zero, so we may write f as a function of u1 and ws, f (V3,
Vi) =f (u1, ue) 5 - . .
Wlf(uh us) = asfi(us, u2) + falus, us)

GLVg ]~’(u1, ug) = —a1f-1(u1, Us) .

Substituting these derivatives into equation (4.11) we see that f2(u1, us) = 0; that is,
that fis a function of u; = a2V1 — a1V alone. We also know that g is positive homo-
geneous of degree ». From these two facts it is easily seen that g(Vy, V) = |kV1 +
k2V2|” where k; > 0 and k2 & 0 from our assumption of nondegeneracy.

From the remark made after the statement of the theorem, this is equivalent to
the condition £; = k£, where £, is nondegenerate stable and & # 0 is a constant.

Now let s be arbitrary, s > 2. Putting all the aj = Ofor £ = 3,- - -, 5,7 = 0,
1, + -, n, we are reduced to the case s = 2; hence £ = c.£; with & stable. By sym-
metry we must also have & = ci& fork = 8, - « -, s, ¢z # 0. Again we may apply

the remark just mentioned to show that

v
)

> tik;

J=1

\bEl."-,Ea(tl; ) ta) = =

which completes the proof of necessity.

Proof of sufficiency. As mentioned before, that the regression is linear when all

variables are normal is well known. We concern ourselves with the case 1 < » < 2,
In this case .

| 2 kit
=1

14

Vey,ooe ot (b, © 0 0y ) = —kp ,
; kit
ki =0, i=1,++--,8
im0 = -~k k>0
‘/’;i(t)=0, for 7=2,--,n
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so that condition (3) of lemma 1 becomes

412) 2| &

I=1

; ki ), tas

=1

2o ke Dty

1=1 j=1

(aoz - > bhahz) =bK, Ji—ll— .
= 1

It is sufficient to show that for all values of the aj there exist functions by, - - -, ba
of them such that (4.12) is an identity in &, + - -, ia.

Unless 'E anky = 0forh = 2, - - -, n, we may choose by = 0 and by, - - -, b 50
=1

that i b i ank; = ,Z F100;. This will satisfy (4.12) identically in &, - - -, ¢, If,
=1

h=2 =1
however, 'Z ank; = 0forh = 2, - - -, n, then equation (4.12) becomes
l=1

14

Z ka1

=1

1]

tl 8

Z ki
=1

Canceling [#|”/4 and solving for by, we have

[Z oiaos — by ;ljkza”] - Klbllﬁ—’.
=1 =

14

v I Zklall ]
:I = __Ei_— ;klaﬂl .

8
E ki
=1

A solution of the equation for b; always exists since

Z ki
i=1

}: kwa,

=1

b [Kl +

14

>0

K +

5. A characterization of the normal law. If the linear structural relation of section
2 is specialized to the case s = 1, n = 2, a much stronger result than any of those
found in the previous sections may be proved. The unique position reserved for the
normal distribution in probability theory is due historically to the central limit
theorem. But in recent times this distribution has appeared again and again in con-
nection with various and diverse problems. Particularly interesting in this respect are
the theorems of R. C. Geary [5 ], Bernstein-Basu-Darmois [3 ], and E. Lukacs [14].
Theorems in this paper and particularly the following one may be added to this list
of characterizations of the normal law.

Note that in theorem 5, the regression is assumed to be linear for only one set of
values of the constants a;, and no assumption of existence of moments other than
the first is made. This theorem has been independently proved by R. G. Laha [10]
of the Indian Statistical Institute.

THEOREM 5. Let £, n1, n2, - * +, 7a, n = 2, be independent, nondegenerate random
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variables with finite first moments. Let X; = a; + g, witha; # 0,7 =1,2,- - -, n.
In order that the multiple regression of £ on X, - + -, X, be linear, it 1s necessary and
sufficient that &, n, - + -, 1. be normal.

Proof. Assume without loss of generality that all the first moments are zero. Con-
dition (3) of lemma, 1 gives

(5.1) y’/; (]g: tjaj> (1 - Z; bhah) = ]:21 bi'/’;,-(tj) .

We will show that ¢ and 7, are normal, and by symmetry, 5, through 5, will be
normal. In (5.1) putéz =ty = - - - ¢, = 0.

;&é(tlal + tzaz) (1 - 12 bhah> = blw;l(tl) + bz‘//’;g(h) .

Putting successively # = 0 and ¢, = 0, and substituting the result back into the
equation, we have

Viltha: + tas) (1 - ‘:Z b;,a;.) = [Yi(hiar) + ¥i(taar)] (1 - 27:: bhah) .

If 1 — 2 buas = 0, then by (5.1) the nondegeneracy of 7, - - -, 7, would imply
bj=0,j=1,-+,nsothat 1 — > bsas = 1. Hence we may cancel 1 — >_ b,ay.
The function |//;(t) being continuous is then seen to be a linear function of ¢, and
hence y(f) is a quadratic at least in a neighborhood of the origin. From this it is
well known that £ and hence %, and %, must be normal.

The difficulties encountered in trying to extend this result to the general case
where s is arbitrary may be well illustrated in the case n = 2, s = 2. In fact, it is
sufficient to consider the case where £, and £, are independent, prefaced with the re-
mark that even worse anomalies may occur if & and £, are allowed to be dependent.
In the case considered, condition (3) of lemma 1 becomes

(5.2) ’Yﬂ/’z,l(tlau + ts001) + ’Yzlﬁgg(tlam + taa9) = bﬂ//;l;l(h) + bztﬁ;z(tz) )

where v, = (am — by — bzam) and v, = (002 — bia1s — bzan)-

First, it might happen that b, = 0, in which case no restriction would be placed
on the variable ;. It may be shown, however, that whenever b, 5 0, 7 must be a
normal variable. Similarly for 7,.

Second, it may happen that v, = 0, in which case no restriction would be placed
on the variable £, but in this case it may be shown that &, 7, and 5, must be normal
variables.

Finally, if A = au@s — @120 5 0 and by 5 0, by 5 0, 71 ¥ 0 and v, 5 0, all
variables concerned must be normal. However, if A = 0, then y;, and ¢, have essen-
tially the same argument, and thus the distribution of £ may be “subtracted out”
if £ has the same distribution as a component. It is easily checked that the following
example satisfies equation (5.2).

Let ® represent a normal distribution with zero mean and unit variance, and let F
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represent any distribution with a zero mean. Let &, £, m, n2 have respectively the distri-
butions given by F, F % ®, ®, ®. Then for the structure

Xo=£1+352
X1=E1+Ez+n1
X2=El+52+772

we have E(X()'Xl, Xz) = X1 + Xz.

If s > 2, an example similar to this one may be given, in which none of the de-
terminants, such as A above, are zero.

6. Dependent error terms. First we consider a theorem on an extension of the
problem of Ragnar Frisch allowing the error terms to have a bivariate stable distri-
bution. Secondly, we consider the implications of this and other theorems in this
paper on the problem of identifiability in a linear structural relation.

In the simple structural relation (1.1), we assume that £ is independent of (no, 71)
and that (no, 71) has a bivariate stable distribution which, for simplicity, we take to
be symmetric. We assume further that all of the variables have finite first moments
which we take to be zero. Thus, the characteristic function of (n, 71) may be written
in the form

—g(¢g.ty)
¢nom1(t0; t) =e e,

where g is a real positive homogeneous function of degree », 1 < » < 2. To avoid
cases where the regression is trivially linear we assume also that #; is nondegenerate

and a; # 0.
TarorEM 6. In order that the regression of Xo on X1 be linear, it is necessary and

sufficient that etther
(i) & s symmetric stable with the same characteristic exponent v, (perhaps degenerate),

or

Proof of necessity. Using condition (2) of lemma 1 and the particular form of the
characteristic function of (70, 71), we may derive a necessary and sufficient condition
similar to (3).

Viltar)(ao — bas) = o0, &) — bgs(0, ¥) ,
which holds for all values of ¢. Using formula (4.3), this equation may be rewritten as
t v
6.1) Viltm)as — ba) = —[b:0, 1) — o0, D] 1L

Hence, if ao — ba; # 0, £ must be symmetric stable with characteristic exponent ».
If @y — ba; = 0, then also bgi(0, 1) — ¢(0, 1) = 0.
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Proof of sufficiency. The sufficiency of condition (ii) is obvious from equation
(6.1). Therefore, let y:(f) = —K|t|”, K 2 0. Equation (6.1) becomes

K J%[_ Jz_il_ (@0 — bay) = —[bg:(0, 1) — go(0, 1)]'—2—':.

Upon rearranging we find
WK lal” + 00, D] = vk 280 — g0, ).

The coeflicient of b is not zero since #; is nondegenerate stable. Hence, a solution for
b always exists.

In particular this theorem implies that if the regression is linear for two values of
the pair of constants (as, a1) and (ad’, a.") such that ay/a; 5 ay’/a,’, then the variable
£ must be symmetric stable.

7. Relation to identifiability. Particularly interesting is the relation between these
theorems and the theorems on identifiability in a linear structural relation in a paper
by Reiersgl [17], which also contains an interesting account of the history of the
subject. In a structure such as (1) we are able to observe only the variables X, and
X, and by taking an infinite number of observations we would be able almost surely
to construct their joint distribution by the Glevenko-Cantelli theorem. However, we
are usually interested in the latent apparatus of the structure. We would like to
know the hidden relation between X, and X;: the ratio a:/a, and the distributions
of £, no and 7;. We shall rewrite equation (1.1) in the form used by Reiersgl.

X0=E+770
X1=5E+50+"71,

where 8 replaces the ratio a;/ao and B, is some arbitrary constant.

In his paper Reiersgl considers two models for this structure. Essentially, model A
is composed of the three assumptions:

(1) ¢isindependent of (no, 1),

(2) Eng=Enm =0,

(3) 7m0 and #; are jointly normal.

Model B is composed of assumptions (1) and (2) of model A but with (3) replaced
by (3’) 70 and n; are independent.

The parameter 8 (or 3, or the distributions of £, 7 and #,) is said to be identifiable
in a model if the joint distribution of X,, X, determines 8 (or 8, or the distributions
of £ mo and 71) uniquely—that is, if there do not exist two different realizations of
the model, (B, B, £, m, m) and (B*, Bo*, £, 7*, m*) with B ¢ B*, which give rise to
the same joint distribution of X,, X;. Thus, if there exists an estimate of the param-
eter 8, which is consistent in the model, 8 is identifiable in the model. That the con-
verse is true in many important cases, in particular in models A and B above, has
been demonstrated by J. Neyman [15] by actually constructing consistent esti-
mates of B. Interesting papers on identifiability in many dimensional structural
relations have been written by Koopmans, Rubin, and Leipnik [9], and T. A.
Jeeves [T].
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Reiersgl establishes necessary and sufficient conditions for B to be identifiable in
each of the models A and B.

In model A, B is not identifiable if and only if £ is normal.

In model B, B is not identifiable if and only if £ is normal and esther the distribution
of o or the distribution of n, has a normal distribution as a component.

These theorems stand in an interesting juxtaposition to the previous theorems of
this paper. They tend to indicate that one cannot simultaneously assume that the
regression of X, on X, is linear and expect to be able to find a consistent estimate of
B. For example, in model A, if the regression of X, on X} is linear, then by theorem 6,
B is identifiable only if 8 = ¢1/p where o;?is the variance of 71 and p is the correlation
coefficient of (o, n1). Also in model B, if we assume the regression is linear whatever
be the value of 8 in some interval or even linear for just two values of B, and we
assume that a second moment of ¢ or »; exists, then an application of corollary 1
of section 3 will tell us that 8 is not identifiable.

The correspondence between theorem 6 and Reiersgl’s theorem for model A can
be strengthened by a slight extension of Reiersgl’s result. We may enlarge model A
by replacing condition (3) by

(8"") mo and 4, are nonsingular, symmetric bivariate stable.

Denote the model composed of assumptions (1) , (2) and (3") as model A;. This
model has an independent interest in that it is an example of a model for which ¢
may not be normal and yet 8 will still not be identifiable.

THEOREM 7. In model A, B is not identifiable if and only of £ is symmetric stable with
the same characteristic exponent as (no, 11).

By symmetric stable we do not mean here that £ is symmetric about zero but
rather symmetric about some point. We shall omit the proof since it follows the
lines of the proof of Reiersgl’s theorem rather closely. It is also easy to show that
the theorem is still true if the word symmetric is omitted both from the model and
thetheorem.

It is of some further interest to consider identifiability in a model analogous to
that of theorem 5. Although the result of theorem 8 below does not parallel that of
theorem 5 quite so nicely, its interest lies in the fact that it complements Reiersgl’s
result and affords an example where all the variables concerned are normal and still
we may have identifiability.

Suppose random variables X; have a structure of the form

Xo=£+770
X;=ait+n;, i=12 - n, n=>9

We shall use a model composed of the following three assumptions.

(1) ¢isindependent of o, s, - * -, 7 ,

(2) Eng=Eny = - - - =E77n=0;

(8) m0, m, - - -, nn are completely independent.
We are interested in the identifiability of one of the a;, say a;. Butifa, = a3 = + - -
= an = 0, then the problem is reduced to Reiersgl’s theorem for model B. If we
assume a» > 0 we obtain the following theorem.

THEOREM 8. If a2 5 0, a; is not identifiable tn the model if and only if £ is degenerate.
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Proof. The sufficiency of degeneracy is obvious. To prove necessity first note _tl}at
from Reiersgl’s theorem it is necessary that £ be normal. We are given the joint
distribution of X,, X, X; hence, we know the value of

Vg X, Xo(tho, Uty U2) = Ye(tho + axir + aatts) + Png(0) + Py (U1) + Yny(u2)

in a neighborhood of the origin. If there is a different realization of the model
(ar*, as*, £, no*, m*, 7.*) with a; # a:*, yielding the same distribution of Xo, X1, X
we must have

im(uo + awu; + azuz) — 1%2 (uo + aw, + az’uz)2 -+ "/’no(uO) + 'l’nl(ul) + \bnz (uz)

*2
= im*(uo—l—a"l‘ul—l-a:'uz) - K‘z_ (u0+a=f u1+a:u2)+ ‘klﬁ (uo)"l- Il,"'x' (ul) + Sb,,; (ug ))

where m and K? (similarly m* and K*?) are the mean and the variance of £ (respec-
tively £*). Applying the partial differential operators 9%/dusdu, and 9%/dw0us in
turn, we derive the equalities

—_ % ok
Ka, = K*a;

—_ k ok oy
Kaa, = K*a}aj .

From this follows the equation

Ka.a

— *
e, = Kaja

-
Since a; #% a;* and a; # 0, we must have K = 0;i.e., £ is degenerate.
< o =

I should like to express my gratitude and indebtedness to Dr. Lucien LeCam for
the suggestion of the problem here considered and for his generous advice and en-
couragement.
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