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ON CHARACTERIZING DISTRIBUTIONS BY PROPERTIES
OF ORDER STATISTICS*

By THOMAS S. FERGUSON
University of California, Los Angeles and Berkeley

SUMMARY. In Section 2, those continuous distributions F are found for which the regression
of Ximy on Xy s is linear, when X, ... , Xy are the order statistics of a sample of size n from F, and
1< m < n. InSection 3, those discrete non-degenerate distributions of independent X, ¥ are found
for which min (X, ¥) and | X —Y | are independent.

1. INTRODUCTION

An interesting property of the negative exponential distribution with location
parameter o and scale parameter oo > 0, having density

ot Teol = e e
f@la, o) = 3 S
: Lo fort s <<lay
is as follows (see Malmquist, 1950; Epstein and Sobel, 1954).

If X, X,, ..., X, is a sample from the negative exponential distribution and if
Y, S ¥, ~ o =0 W0 ave the order statistics, them Yy, Yo ¥, Yo ¥, ..., ¥, — ¥
‘are mutually independent.

n—1

Various converses to this statement exist. Fisz (1958) proved the following
theorem, a converse when n = 2. If X, and X, are independent identically distributed
with an absolutely continuous distribution, and if Y, and Y,— Y, are independent, where
Y, = min (X;. X,) and Y, = max (X, X,), then X, and X, have o negative exponential
distribution. Further generalizations may be found in Rossberg (1966).

An extension of Fisz’s theorem to arbitrary » has been made by Tanis (1964)
as follows. If ¥, ..., Y, are the order statistics of a sample of size n from an absolutely
n
continuous distribution, and if Y, and Z (Y;— Y,) are independent, then the distribution
§=2
s megative exponential.
Fisz’s theorem has been strengthened and extended to arbitrary n by Rogers
(1963) : If Y4, ..., Y, are the order statistics of a sample of size n from an absolutely
continuous distribution, and if for some m = 2, 3, ..., u, the regression of Y, .1—Y,, on
Y,, is constant, then the distribution is negative exponential.

*The preparation of this paper was sponsored in part by N.S.F. Grant GP-5224.
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Two comments are in order. First, Fisz and Rogers state their results for the
exponentials of the negatives of the variables occurring here, assuming their variables
are positive, using ratios instead of differences, and arriving at a characterization of
the distribution with density

e o Wi
g(z}ﬂ, 0) =< a2
Lo otherwise

where f = e72, § = o1, and 2 = ¢~%. We have taken the negatives of the logarithms
of the variables occurring in their papers to make comparisons easier and because it
seems to be a more natural setting. Second, Rogers states that he assumes the inde-
pendence of Y, ,—Y, and Y,, whereas in the proof he uses only the constancy of
the regression of Y,,.;— Y, on Y, so that it is the above that we refer to as Roger’s
theorem.

In Section 2, we prove a theorem which generalizes Roger’s theorem in two
directions. First, the assumption of absolute continuity is replaced by the assump-
tion of continuity. Second, instead of assuming the regression of Y,,,,— ¥, on ¥, to
be constant, we assume that the regression of ¥,,,, on ¥, islinear. Thissecond genera-
lization admits two additional families of distributions in the conclusion of the theorem.
One is a Beta type (as is the density (2)) with density

\ { 0p0o—w)i-1 for st R "0/
H@)es 5, 0)=(L S (3)
0 otherwise
where 6 > 0 and § > 0. The other is a reciprocal Beta type with density
( 6B0w— o)1+ for > alp
fela, B,6) = 4 o St
Lo for z<atp

where 0 > 0 and # > 0. In both densities, & and 2 are location and scale parameters.

The first result along these lines appears to have been by Bartoo (1952) who
treats this problem among others in his Ph.D. thesis. For his result, Bartoo assumes
absolute continuity and that for fixed » and s the regression of ¥, on ¥, is linear for
all sample sizes n > r--s (whereas n = r+4s+-1 is all that is required). Furthermore,
he assumes that the distribution is bounded and so arrives only at distributions (3),
although he points out that (4) is also a possibility.

A result closely related to Fisz’s theorem, dropping the assumption of identical
distributions and absolute continuity, but requiring a slightly stronger independence
assumption is due to Ferguson (1964, 1965) and Crawford (1966) : If X, and X,
are independent non-degenerate random variables, and if min (X, X,) and X;—X, are
independent, then either (i) both Xy and X, have negative exponential distributions with
common location parameter but possibly different scale parameters, or (i1) both X, and X,
hawe geometric distributions with common location-scale parameters but possibly different
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geometric parameters. The geometric distribution is the discrete distribution with
probability mass function

f@|a, B, r) = (1—r)r@-l8 Bo— 0, e, o208, ()

where o and # > 0 are location and scale parameters, and 0 < r < 1 is referred to as
the geometric parameter.

In Section 3, this theorem is generalized in the discrete case to the weaker
independence assumptions found in Fisz’s theorem. Several families of distributions,
in addition to the geometric distributions, appear. This study allows one to make a
reasonable conjecture for the continuous case as well : that if X; and X, are independent-
with continuous distributions, and if min (X;, X,) and |X;—X,| are independent,
then either (i) both X; and X, have negative exponential distributions with common
location parameters but possibly different scale parameters, or (ii) X; and X, have
densities of the form

S el for a<xz<atpfy
= B0 1160 for > a+py
' (6)
g 1 for o << atpfy
fx (%) = B(1—0e~) . { =0 for x> atpfy

where £ > 0, —1 < 6 < +1and y > 0. The distributions (6) are limits of the distri-
butions of part (ii) of Theorem 2. The author has been unable to prove or disprove
this conjecture. It is easy to check, however, that if X; and X, are independent and
have the distributions under (6), then min (X, X,) and |X,—X,| are independent.

Results related to those found in this paper have been obtained by Bolger
and Harkness (1965), Govindarajulu (1966), Lukacs (1965), and Sethuraman (1965).

2. TINEAR REGRESSION OF ADJACENT ORDER STATISTICS

In this section we assume that ¥, Y, ..., ¥, are the order statistics of a sample
of size n from a distribution with continuous distribution function F. To simplify
the notation used in the proofs of the following results, we deal with E(Y,|Y,, ;)
rather than B(Y,, ;| Y,). Asa consequence of the assumed linearity of this regression,
we obtain the distributions of the negatives of the variables whose densities are given
in (1), (3), and (4). The method used works for rather arbitrary (non-linear) regression
functions. However, it fails when the order statistics are not adjacent. It is un-
known what new distributions arise if any when dealing with the regression of Y,
@0 :

Recall that a regression function E(Y,|Y,. = y) is determined only up to
an equivalence, that is to say, it is only determined almost surely (a.s.) with respect
to the distribution of Y, ;. One possible and natural choice of this function is as
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R(y) below, the expectation of the maximum of a sample of size m from the distribution
of F' truncated at y. ; :

[ waF@Fy i Fy) #0
B e e
Ly ' i Hiy) = 0.
It is easily checked that R(y) satisfies the definition as @ Poséible choice of
B(Y,,| Y,; =y). The following lemma gives the important properties of R(y).

(7)

Lemma : If F s continuous and if R(y) defined by '(7 ) exists,-then R(y) is conti-
nuous and non-decreasing. Furthermore, if F(y,) < F(y,), then R(yy) < R(ys). -
Proof : Since F(y) and jy xdF(x)™ are continuoﬁs, it is clear that R(y) is conti-

nuous at all points except perhaps at ¢ = inf{y : F(y) > 0}. But since for y > c;
R(y) is the expectation of a variable taking Values between ¢ and y, R(y) must eonverge
to ¢ as y tends to ¢ from above. .

Clearly, R(y) is increasing for y < ¢, and R(y) > R(c) if y > ¢. Suppose that
< e 0 e :

[R(yz)— (%)] F(y)"F(y,)™ . i
Y

— Fr { T R - wdB @y,

; e ~F(y1)’”f wdB ()"~ [F(go)"—F(y,)"] | adFla)"
F(yl) yx[F(yz)”’ H( [F(yz) —F(y,)™ ]ylF(yl) f = ),

Wlth strict inequality if F(y,) << F(y,), completmg the proof.

One of the uses we make of this lemma is to tiote that if I Brleinnnt=1p)
is linear, say equal to ay—b a.s., then a > 0.

Theorem 1: If Yy, Y, ..., Y, are the order statistics of a sample of size n
Jrom a distribution with continuous distribution function F, and if for some positive
nteger m less than w, B(Y | Y, .1 = y) = ay—>b a.s. for some numbers a and b, then the
distribution function is except for change of location and scale

Sl M) =& Jor z-< 0, I ) ==
SRR Joriorges 1t o enipietabad)
(i) F(@) = (—a)? = Jor LT e al 1

:’wkere 0 = a/(m(1—a)).

Proof : Since one way of writing the regression B(Y,,| Y, = ¥) is (7), we
have

fwxdﬁ*(xy'?:(ay_b)zr(y)m as. (F). Pidt intoes T
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Find numbers ¢ and d, possibly infinite, such that {x : 0 < F(x) < 1} is the interval
(¢, d). There does not exist a subinterval (cy, dy), ¢ < ¢; < d; < d, over which F is
constant since the left side of (8) is constant in such an interval and the right side is
increasing, while both sides are continuous, so that they could not possibly be equa;_l
at the next points of increase of F. Thus (8) is valid for all ¢ (c, d). The left side
may be written ; : »

fxdp(x) ——yFy)’" f F(x ", A )

The existence of the integral oh the 1eft implies the existence of the integral on the right,

4 s ‘ : . 2
Let H(y) = [ F(x)"dx; then H'(y) exists for all y and is equal to F(y)". Equation (8)
may be rewritten as - . i

%bg'ﬂ(y):((i_a)ﬂb)—l for allf'ye(c,d);"f i d0)

We may solve this differential equatlon separately for the three cases mentioned in
the theorem. 3

Case (i) : ‘@ =1. Since Iog H(y) is increasing in (c, d), b must be positive.
By integrating (10) we find H(y) = Ke¥/%, and by differentiating, we find F(y)" = Kb!
e, Clearly ¢ = —co and d < co; and since F(d) = 1, F(y) = e¥-D/" for y < d.
This is the distribution under (i) with change of location and scale.

Case (ii): 0< a <t 1. Integrating klO), we find H(y) = K((1—a)y--b)V/1-o
for ye(e, d). In this case, ¢ and d are finite and the restrictions F(c) =0 and F(d) = 1
give —

By) — (g%i)”, for c <y <d,
where 6 = af((1—a)m) and ¢ = —bj(1—a). 22X

Case (iii) : a > 1. Integrating (10) we find H(y) = K(b—(a—1)y)~"¢*2 for
ye(c, d). In this case ¢ = —oo and d < oo The restriction F(d) = 1 gives

_F(y)—(?y/ z> =fon Sye<d

where 0 = —af((a—1)m) < 0, and v = bj(a—1) > d. This completes the proof.

3. INDEPENDENCE OF min (X, ¥) AND | X~ ¥ | IN THE DISCRETE CASE

The following theorem may be considered in two ways—as a generalization of
the Ferguson-Crawford Theorem in the discrete case by weakening the hypotheses of
independence, or as an extension of Fisz’s theorem to the discrete case dropping the
assumption of identical distributions.. '
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We seek all possible pairs of distributions of independent discrete random
variables X and Y for which U = min (X, Y) and W =|X—Y | are independent.
If either X or Y is degenerate, the problem is rather trivial. One can easily show that
if X, for example, is degenerate, then in order that U and W be independent it is neces-
sary and sufficient that U or W be degenerate. Thus, we restrict attention to non-
degenerate X and Y.

In this theorem, a simultaneous change of location and scale means of change
of (X, Y) into (aX+b, aY+b), where a > 0.

Theorem 2 : Let X and Y be independent, discrete, non-degenerate random vart-
ables. Then, U=min (X, Y) and W = | X —Y | are independent if, and only if, the distri-
butions of X and Y may, by a simultaneous change of location and scale, be put into one of
the following four forms.

(i) Lorsome 0 <r, <1 and 0 <ry<<l,

PG — 1 — (1—r)rt Jor e ="0ub....
P{Y =k} = (1—ry)rk Jfor ek— Ol
(i) For some integer n > 1,0 <r < land —1 <0 < +1,

; T e o fer— 01 il
e i El +2);;) ;
[ 146 for k=mnntl,...
n 1 for=Yer—ROBIEE =
Pl <Hyaiiziieolf

(1—0r") * <L 1—0 for k=mn,n41, ...

(i) For some 0 <r <1 and 0 < 6.<< o0, either

A [ 1 Jort k=101
PX =k = —~ .
L ; (1--0r?) i 110 Vo e 23
(L+0r)1 for k=0
py ==
[ 1—(14-06r)1 for k=1

or the same with X and Y interchanged.
(iv) For some 0 <r < land 0 < 0 < o0,

; ((140)" for k=0,24,..

PX =k} = (1—r)rk . J
At e = LB
€O Jap = 0,24 .

PR =R = ([ =pZ)pk J
L (@fn)= Jor fe=1,8 5, ...

Remarks.: Bach of the four forms above is a two-parameter family of distri-
butions (in addition to location and scale parameters). The distributions under (i)
are the geometric distributions of equation (5). In (ii), if equality holds in the in-
equality involving 0, then the distribution of X or of Y is concentrated on exactly »

270



ON CHARACTERIZING DISTRIBUTIONS BY PROPERTIES OF ORDER STATISTICS

points. In (iii) the distribution of Y (or X) is concentrated at two points. Although
this can occur in (ii) with » = 2, (iii) is not a special case, since P{Y = 1} is not neces-
sarily equal to 7P{Y = 0}. In (iv), the values of the formulae at § = +-co are to be
interpreted as the values of the limits as 60— +oo. The distribution of Y is obtained
from the distribution of X by replacing 6 by 6-'. If @ = 0 or oo, then the probability
of successive integers is zero alternately for X and Y.

Proof : We consider two main cases, and in the second case we consider five
subcases.

Case I: P(W = 0) = 0. This states that no possible value of X is a possible
value of ¥. Since X and Y are non-degenerate, there exist either two possible values
of X less than some possible value of ¥ or two possible values of Y less than some
possible value of X. We shall suppose that the former is true, since the distributions
in the latter case may be obtained by symmetry. Thus, we suppose that z; <z,
are such that P(X = x;) > 0, P(X = x,) > 0, and P(Y > ;) > 0. Then, for all
w > 0, '

P{Y = x+w}

:P{Y:$1+WIY>W@}: w coo (11)

for ¢ = 1, 2. Combining these two equations gives
P = a0l = GHIBPT = a0 = ({12)
where
= P = o TP = oo (13)

Now let y be any possible value of Y,y > x;, and put w = y—=; in equation (12).
P{Y = (r,—,)+y} = nP{Y =y}

Thus, inductively, k(z,—=;)-+y are possible values of ¥ for k =1, 2, ..., and
P{Y = k(x,—ax;)+y} = i P{Y = y}. o, (I

Since the sum of these probabilities cannot be greater than one, r; < 1, or from (13),
P{Y > x;} > P{Y > x,}. This says that between any two possible values of X
less than some value of Y, there must exist some possible value of Y. Formula (14)
also shows that for any possible value, y,, of Y, y, > x,, there exists a possible
value y; of ¥, #; << y; << #,, for which P(Y = y;) > P(Y = y,). This immediately
shows that there are at most a finite number of possible values of X less than x,, since
if there were an infinite number, there would also have to be an infinite number of
possible values of Y, all with a larger probability than that of y,, clearly an impossi-
bility.

The following equation may be derived analogously to formula (11),
PIX — g wh— Pe—=—w PGy, e (15)
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where ¥, is any possible value of Y less than z,. Now, formula (14) shows that the
distribution of ¥, and hence of W, is not bounded above, so that by (15) the distribution
of X is not bounded above. Thus, there are two possible values of Y less than some
possible value of X, which implies that the preceding analysis may be carried out
symmetrically with respect to X and Y : that between any two possible values of ¥
there is a possible value of X, that there is only a finite number of possible values of
Y less than a glven number and that analogously to formula (14), for y1 < Ys»

P{X = ky,—yy)-+} = rAP{X = a}. e elile)

We may-sﬁpp’o.se in formulas (14) and‘(16); that x; and 2, are the smallest two possible
values of X and that y; and y, are the smallest two possible values of Y. ° 7

Suppose, - first, that y; < #;. - Then we know that w; = 2;—y; is a possible
value of 7, and that there is no possible value of W smaller than w,, since from formula
(15) X would then have a possible value smaller than z;. Now, formulas (11) and (15)
imply that y,—u, = w,;, and, inductively, that the only possible values of X are
By =2kw;+a; for k=0, 1, 2,..., and the only possible values of-Y are y ,=2kw,+y,
fork = 0,1,2,... . Formulas (14) and (16) imply that X and ¥ both have geometric
distributions on these equally spaced and alternating possible values, and thus that
P{X =2} = 1—r, and P{Y =y} = 1—r;. Formula (15) with w = w, becomes

1—r = PX = o} = P(W = w)} = P{|X—¥| = w}

= El P{X = z}P{Y = ?/j}+’,§1 B = a3 PO = Yis1)

(Q=r)(1=r)(try)

vl"7'17'2_ ‘

This implies that 7, = r,. With a change of location and scale which puts y; = 0
and z; = 1, these distributions are found in the statement of Theorem 2 under (iv)
with § = c0. By symmetry, the distributions of X and ¥ When x, is assumed less than
-y, is-found under (iv) with 6 = 0. 2

The fact that if X and Y are given these distributions, then U and W are inde-
pendent, is easily checked dn'ectly and the details are omitted.

. Case 1I : P{W =40t e=210,00lfe B(Xa=ix) and P{Y > x} are positive, then
P{Y = «} must be positive, since, if not, then 0 < P{W = 0} = P{W = 0|U =}
=P{X=Y|X=u Y >a} =0, which is a contradiction. Thus, every possible
value of X ess than some possible value of ¥ is a possible value of Y, and, symmetri-
cally, every possible value of Y less than some possible value of X is a possible value
of X. This and non—degeneracy imply that there are at least two distinct numbers
%, <-%, which are possible values simultaneously for X and Y,
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The independence of U and W, and that of X and ¥ imply that
P{U = u} P{W = w} = Plmin(X, ¥) = u, | X— Y] — )

{P{X:u}P{Y:u} i , , ifw=0
= P{X — P{Y = u—[—w}—[—P{X = u—[—w}P{Y — u} if w> 0,
(17)

for all w. Since P{W = 0} # 0, we may solve for P{U = substitute the solutmn
back into equations (17), and arrive at the equation -

P{W = w} w}

=) {X =0 P{Y = u+w}+P{X = whu) PY =),

P{X = u} P{Y = u}
(18)
for all w and all w > 0. Lettingu assume alternately the values %, and z; will yield
two equations valid for all w > 0.
PEX — x0+w}+P{Y = dofwy  P{W =w} .  P{X = x1+w}+P{Y = 2w}
PR=wj = P=wf ~ PW=0] ~ PX=2) ' PT=u}
(19)

The right side of equation (19) is positive for w = x;—u,,-so that, from the left -side,
not both of P{X = z,+2(x,—2,)} and P{Y = z,+2(¥;—x,)} can be zero. By induc-
tion, each of the points xy+n(x;—a,) for n = 0, 1, 2, ..., must be a possible value either
of X or of Y. Now let :

C =min {PX = xl)/P(X =1u,), P(Y = x;)/P(Y = ,)}.
Then, from equation (19),

PX = xo+n(x1—x0)}+P{Y = Zo+n(@,—%)}
PLX = ) P{Y = )

<ol (P{X = 2o+ (1)@, —2)} . P{Y = xo—i—(n—}—l)(xl—xo)})
O D0 = wo} B =)

for all n, so that by induction -

PX = zytn(@,—2)} | P{Y = xp+n(2,—,)} n
B gy &S Fip—iggenn g

for all ». This implies that ¢ < 1. In other words, either P{X = x} > P{X = =}
or P{Y = z,} > P{Y = «,}. Since x, was an arbitrary possible value of X and ¥
less than a;, there can be at most a finite number of such possible values of either X
or Y less than #; if both X and Y are to have finite probability mass.
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We now suppose that x, is the smallest possible value of X and Y and that
%, is the next smallest. From equation (19), P{W =w} must be zero for 0<<w<x;—x,,
and by induction zy+n(x;—x,) for » = 0, 1, 2, ... are the only possible values of
X and Y. - We change the location and scale of the distributions if necessary so that
%y = 0 and ; = 1. Now, 0 and 1 are possible values of both X and Y, and the only
possible values of X and Y are the non-negative integers.

To simplify the notation, we shall let a;, = P(X = k) and b, = P(Y = k).
Then equation (18) after the elimination of P(W = w) becomes

akbk(&‘—l—b—

\ao b:: > o akbn+k+an+kbk5 e (20)

for all non-negative integers k¥ and n. From this we may derive the simultaneous
equations,

a; b
b1 t0p 1 = by ( i‘i‘ 5(1’*> ;

b
Obpa 0100 = all»l(ZiJrz—)’“—). (L)
- 0 0

If the determinant

AIG — akbl‘—bkazl oo (22)
is not equal to zero, we may solve equations (21) for o, ., and b;,,. Elementary mani-
pulations yield

S
A1 = - E
0

br1 = (%) b B (23)

Automatically, a, = 0, b, £ 0, a; #~ 0, b; 7~ 0, and not both of a, and b; can be zero
for any positive integer k. i
Case TTIA : a;by = biay. Let r = Z—l — %, and let n be the smallest positive
3 0 0
integer for which A, # 0, or equivalently a,b, # aob,. Then n > 2, and b, = azb;
for & < n, so that
ak — Tkao
for &k < w . (24)
bk = kao

Suppose that n < oo. Since A, £ 0, equations (23) hold for k= n. Then A,
= rA, # 0, and equations (23) hold for k£ = n-+1. By induction, equations (23)
hold for all & > n. Thus,

=70,
for k > n. vaeth (25)
bk — 7k_nbn
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In addition, equation (20) reduces to

an bn i »
%ero = 2r o 26)

which allows us to put a, = r*(1+60)a, and b, = r(1—0)b,. Then Xa; =1 and
¥ b, = 1imply a, = (1—7)/(1+0r") and b, = (1—r)/(1—06r"), yielding the distributions
found under (i) with n > 2.

If n = oo, then equations (24) hold for all values of k, giving geometric distri-
butions with the same geometric parameter, a special case of (i).

' Cuse 1IB : agby 7 byay and ah; = byay. Since not both of a, and b, can
be zero, a,b, = bya, implies that neither can be zero. Thus we are as in Case IIA

with the origin shifted one unit, so that

ap = 11 a,
o s il o (20)
by == il

and
— k-1
O = [P

for k> n+1 et 29)
b = r""1a,, '

where n is determined so that Ay, = 0 for 1 <k < and A, ; # 0, (n > 2).

Suppose first that » < co; then, since A, ; 7 0, equations (23) give
B =" (22 &
R <(¥/0) n+l

by \
bn+2 e (bﬁ/ bn+1'

‘Combined with (28), we see that r =a,[a, = b,/b,, contradicting ab, # by;. Thus
n = oo, and equations (27) hold for all k.. In addition, equation (20) with n = k = 1
implies that

G

ay by o 27”'

Ag in Case ITA, this reduces to the distributions found under (ii) with n = 1.

Case IIC :  aghy # byoys aghy 7 byay and asby = byty.  Letb #2 = ayfa, = b,[by.
Then # == 0, since not both of a, and b, can be zero. Since A, is assumed to be different
from zero, equation (23) with k£ = 2 becomes

g = 7%, -
by = 72 by. : o Re w00
Furthermore, equation (20) with k = n = 1 becomes
Gl = B )
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The following simultaneous equations are also special cases of equation (20).

0yb g1 +010,00 = asby < +b )

(31)
' a b
@5b, b, :ab("“l iil«)
2004177 000 11 22\ Tg. b,
We shall prove by induction that
Qap = 1% @y gy = 17 0y
and s (32)
by, = 1% b, bat1 = % by.

These four equations are already known to be valid for & — 0 and &k = 1. We suppose
that equations (32) are valid for k < m and proceed to prove their validity for b = m.
Since A, # 0, equation (31) may be solved for Qg and by, (when n = 2m—1). Tle-
mentary manipulations involving (30) and the induction hypotheses yield a,,, = 2"a,
and b,,, = r2"b,, the first two equations of (32) when k = m. But now A,,, = 72%(ab,
—a3hy) # 0, so that from equations (23) Bamp1 = Wylomty = 17"ay, and by, = r2",.
This proves (32) for £ = m completing the induction.

Equation (30) allows us to set a, = ra, and by = rby/0. Then Xa;, = 1 and
2bg = 1 imply @y = (1—72)/(14-r6) and by = (1—+%)0/(0+r), yielding the distributions
contained under (iv) when the inequalities involving @ are strict.

Case IID :  aghy = byay, a,by % by, Aoby 7 byaty and @b, = 0. Since not
both @, and b, can be zero, either a, == 0 and b, = 0,0ra, = O0and b, = 0. We assume
that a, # 0 and b, = 0, the other situation being completely analogous. Then, since
A, #0, equation (23) gives a, = (a, [@o)a; and by = 0 which shows that A, =£ 0. Obviously
this may be continued indefinitely, so that

Uy ==

bk = ()
where » = a,/a,. Furthermore, equation (20) with k& — » = 1 entails Gy = Oy < % —}— 5 )

which allows us to set a, = 7%14-0)a, and by = r0b,. Then, Sa; =1 and Zb, = 1
imply @, = (1—7)/(1+0r?) and b, = 1/(14-6r), ), yielding the distributions found under
(iii). Of course, if we had assumed that @, = 0 and b, # 0, then the distributions
would be as under (iii) with X and ¥ interchanged.

Case IR 1 agb; # byay, anh, - byay, tsby 7 by and ayb, = 0. Since A, =£ 0,
equatlons (23) with £ = 2

ds—7ra5 (
33)
by = 75b,
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are valid, where 7; and r, are defined by

Gy = 70 «. (34)

by =7y
Equations (33) and (34) imply that

Ag = ryro(asbe—bstty) # 0,

so that

Uy — 120,

(35)

b4 - T%bzo
Equation (20) with k¥ = n = 2 may be transformed with the help of equations (35)
and the hypothesis ayb, 5 0 into the equation @gb,+-bya, = (r34-r§)asb,. This and
equation (20) with £ = n = 1 form two simultaneous linear equations in a, and b,
whose determinant is agb;—a,b, # 0. Solving these equations gives

= 2
dy =0,
by — iy

Now, we may show by induction that A, = @,b;—ab, = a;b,[rI1—r22] =£ 0, so
that equations (23) become

@ L

for all %

by —1ih,
This obviously implies that both X and Y have the geometric distributions found
under (i).

In order to show that each of the four forms of the distributions of X and Y,

given by (i), (ii), (iii), and (iv) in the statement of Theorem 2, lead for independent X
and Y to independent U and W, it is sufficient in Case IT merely to check that equation
(20) is valid for all integers k and n. In each of the cases, this is a tedious but straight-
forward task. In the interest of brevity these calculations are omitted.

We finish with the following corollary which is an immediate consequence of
Theorem 2.

Corollary : Let X and Y be independent, identically distributed, non-degenerate,
discrete random variables. Then U = min (X, Y) and W = | X—Y | are independent
if, and only of, X and Y have geometric distributions.
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