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Abstract. The multiple criteria secretary problem in which the criteria are independent and the

objective is to choose an applicant that is best in at least one criterion was solved by Gnedin (1981).

We generalize this result to the case of two criteria that may be dependent. Two models, one assuming

independence of the vectors of ranks and the other assuming independence of the variables on which

the rankings are based, although equivalent in the case of independent criteria, are seen to be quite

distinct for dependent criteria.

§1. Introduction. We consider a variation of the secretary problem in which the

objects observed are judged and ranked on several criteria, or traits. There are n objects

that are put in random order and shown one at a time to a decision maker who must select

one of the objects. As each object is shown, it must be either selected or rejected, and once

rejected it cannot be later selected. It is assumed that the only relevant data available to

the decision maker when he must decide on the jth object are the relative ranks of the

first j objects on each of the traits, and it is assumed that the rankings of the different

traits are independent. The decision maker wins if the object selected is best in at least

one of the traits used to judge the objects.

Multiple criteria optimal selection problems were introduced in a more general form,

with observations in a partially ordered set and with an arbitrary payoff utility by Bere-

zovskii, Geninson and Rubchinskii (1980) and Stadje (1980). The above form of the

problem was solved by Gnedin (1981). Such a problem may be considered as a generaliza-

tion of the standard one-criterion best-choice problem, as found, for example, in Gilbert

and Mosteller (1966). Problems in which the decision maker wins if the object selected

is optimal with respect to a social choice function, for example Pareto optimal, were

treated by Berezovskii and Gnedin (1981), Gnedin (1983), Baryshnikov, Berezovskiy and

AMS 1980 subject classification: 60G40, 62L15.
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Gnedin (1984), and Berezovskiy, Baryshnikov and Gnedin (1986). In Samuels and Chotlos

(1987) the goal of the decision maker is to minimize the expectation of the sum of the

ranks of the object selected, rank one being best. Thus, Samuels and Chotlos generalize

the one-criteria expected rank problem solved by Chow, Moriguti, Robbins and Samuels

(1964).

In this paper, we generalize the paper of Gnedin (1981) by allowing the criteria to

be dependent, but we restrict attention to the bivariate setting only. We assume that the

observations are two-dimensional vectors (X1, Y1), . . . , (Xn, Yn) where Xj (resp. Yj ) is

the indicator function of the event that the jth object is best among the first j objects

when ranked according to the first (resp. second) trait. The distributional assumptions

are:

(1.1) (a) The vectors (X1, Y1), . . . , (Xn, Yn) are independent,

(b) P (Xj = 1) = P (Yj = 1) = 1/j for all j .

With this assumption, the joint distribution of the observations is completely specified by

knowledge of the probabilities that object j is relatively best in both traits, denoted by

θj :

θj = P (Xj = 1 and Yj = 1), for j = 1, . . . , n.(1.2)

Note that

θ1 = 1 and 0 ≤ θj ≤ 1/j, for all j .(1.3)

Three special cases should be noted.

(1.4) (a) θj = 1/j for all j .

(b) θj = 1/j2 for all j .

(c) θj = 0 for all j > 1.

In the first case, there is perfect positive dependence between the traits, and the problem

becomes essentially identical to the standard univariate best-choice problem. In the second

case, the problem solved by Gnedin (1981), the traits are independent. Some aspects of

this problem are treated in section 4. In the third case, there is perfect negative dependence

between the traits, and the problem becomes equivalent to a univariate problem in which
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we win if we choose the best or the worst object. This problem has a straightforward

solution presented in section 2.

The general case is treated in section 3. The optimal rule is seen to have the simple

form for some integers 1 ≤ r ≤ s ≤ n :

(1.5) R(r, s) : for j = 1 to r − 1, reject object j ;

for j = r to s − 1, select object j if Xj = Yj = 1;

for j = s to n , select object j if Xj = 1 or Yj = 1.

The probability of win using R(r, s) is found and a simple computational scheme for finding

the optimal values of r and s is given in Theorem 3.1. Asymptotic properties as n→ ∞

of the optimal r and s and of the optimal probability of win are given in Theorems 3.2 and

3.3, under the condition
∑∞

j=1 θj < ∞ . The main result in this case is that the optimal

s/n tends to 1/2 and the optimal probability of win tends to 1/2 also. These surprising

results cover both the independent case, (1.4(b)), and the perfect negative dependence

case, (1.4(c)). Moreover, the asymptotic optimal probability of win is unaffected by the

choice of r provided r → ∞ . In Theorem 3.4, it is seen that the asymptotic value of the

optimal r/n as n→ ∞ is 1− 1/
√
2 = 0.293 · · · .

In the independent case, treated in section 4, it is seen that for all finite n , the optimal

s is equal to the least integer greater than n/2. This is the same optimal value of s that

is found for the perfect negative dependence case, treated in section 2.

It is natural to wonder what happens if the rankings of the objects are derived from a

bivariate normal distribution, for example, as the correlation coefficient goes from −1 to

+1. This leads to the comparison of the ranking model, given by (1.1), and the sampling

model discussed in section 5. In the classical secretary problem as well as in the three cases

(1.4) of the ranking model, these approaches are equivalent. In general though, there is a

big difference.

Finally, in section 6, we look at the problem in which the decision maker wins if and

only if he selects the object, if any, that is best in all of the traits.

§2. The Best-or-Worst-Choice Problem. In this section, we find the optimal rule

for the 2-criteria problem under assumption (1.4(c)). This case arises, for example, when
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one criterion is the negation of the other. It may be considered as a problem with just one

criterion and the decision maker wins if the object selected is best or worst according to

this criterion among all n objects.

We say that object j is a candidate if it is best in one of the criteria among the first

j objects. The standard simple argument of Gilbert and Mosteller (1966) may be used

to show that there is an optimal rule, call it R(s), of the form : Reject the first s − 1

objects and then select the next candidate. (The argument is given in Lemma 3.1 in a

more general setting and so is not repeated here.)

If object j is a candidate and is selected, then the probability it remains best in the

criterion in which it is relatively best at time j is yj = j/n , as in the classical problem.

The probability of win using rule R(s) is, for s ≥ 2,

Qn(s) =
n∑

j=s

P (select j|s)yj

=
n∑

j=s

(1 − 2
s
)(1 − 2

s+ 1
) · · · (1− 2

j − 1)
2
j
· j
n

(2.1)

=
2(s − 2)(s − 1)

n

n∑
j=s

1
(j − 1)(j − 2) =

2(s− 1)(n − s+ 1)
n(n− 1) .

To find the integer s at which Qn achieves its maximum, we look at the differences,

n(n− 1)(Qn(s + 1)−Qn(s)) = 2(n − 2s + 1) .

This is decreasing in s , so Qn(s) is unimodal and the optimal value of s is the first s

such that Qn(s + 1) − Qn(s) ≤ 0, namely, the smallest integer bigger than or equal to

(n+ 1)/2.

Theorem 2.1. Qn(s) is maximized at s = s(n) = 
(n+1)/2� , and the optimal probability

of win Qn(s(n)) → 1/2 as n→ ∞ .

§3. The Bivariate Secretary. In this section, we assume that the observations are

the indicator random variables (X1, Y1), . . . , (Xn, Yn) satisfying (1.1), (1.2) and (1.3).

4



Let α(j, n) denote the probability that an object, relatively best in both traits at

stage j , will remain relatively best in both traits after the nth object has been observed,

1 ≤ j ≤ n ,

(3.1) α(j, n) =
n∏

i=j+1

(1− 2
i
+ θi) (α(n, n) = 1) .

Suppose we select object j . If object j is a single maximum, that is, if it is relatively

best in exactly one of the two traits, then the probability we win is the probability that

it is best overall in that trait, namely j/n, the same as for the 1-dimensional secretary

problem. If it is a double maximum, that is, if it is relatively best in both traits, then

by the addition rule, the probability we win is 2j/n − α(j, n). Letting πj denote the

probability of win if we select the jth object, we have

πj = j/n if object j is a single maximum

(3.2) πj = 2j/n− α(j, n) if object j is a double maximum

πj = 0 otherwise.

Lemma 3.1 There is an optimal rule of the form R(r, s) of (1.5) for some integers r and

s , with 1 ≤ r ≤ s ≤ n.

Proof. Let Vj denote the probability of win under an optimal strategy among those rules

that do not stop before stage j . Since this is a finite horizon problem, the argument of

backward induction may be used to show that it is optimal to stop with object j if

πj ≥ Vj+1 .

The Vj are nonincreasing in j , since any strategy available at stage j+1 is also available

at stage j . Since 2j/n−α(j, n) and (j/n) are both increasing in j , the optimal values of

r and s are
r = min{j ≥ 1 : 2j/n− α(j, n) ≥ Vj+1}

s = min{j ≥ 1 : j/n ≥ Vj+1} ,
and since j/n ≤ 2j/n− α(j, n), we have r ≤ s .

Let β(r, j), for r ≤ j ≤ s , denote the probability of reaching stage j using R(r, s),

(3.3) β(r, j) =
j−1∏
i=r

(1 − θi) (β(r, r) = 1) .
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Finally, let Qn(r, s) denote the probability of win using R(r, s). This probability is com-

puted in the following lemma.

Lemma 3.2. For 1 ≤ r ≤ s ≤ n ,

Qn(r, s) =
s−1∑
j=r

β(r, j)θj(
2j
n

− α(j, n))(3.4)

+ β(r, s)
n∑

j=s

α(s − 1, j − 1)( 2
n
− θjα(j, n)) .

Proof. For r = 1, Qn(1, s) = 2/n − α(1, n). This satisfies (3.4) since β(1, 1) = 1 by

convention, and β(1, j) = 0 for j > 1. Assume r > 1. The first sum on the right side of

(3.4) is the sum, from stages r to s− 1, of the probability of reaching stage j , β(r, j), of
stopping there, θj , and of subsequently winning, πj with a double maximum. The second

sum is the sum, from stages s to n , of reaching stage s , β(r, s), then reaching stage j ,

α(s−1, j−1), and then stopping with a double maximum which wins, θj(2j/n−α(j, n)),
or stopping with a single maximum which wins, 2(1/j − θj)(j/n). Noting that

θj
(
2j/n− α(j, n)

)
+ 2(1/j − θj)(j/n) = 2/n− θjα(j, n) .

completes the proof.

Formula (3.4) may be used to find the optimal values of (r, s). Since this is a 2-

dimensional discrete maximization, one would expect it to be difficult to verify that a local

maximum is a global one. However, two properties hold that simplify the computation

greatly. First, Qn(r, s) is unimodal in s with r held fixed, and unimodal in r with s

held fixed. The mode may be assumed at more than one point. Second, the maximum

of Qn(r, s) over s occurs at a point that is independent of r , in the sense that there is

a number s(n) such that the maximum of Qn(r, s) for fixed r > 1 occurs at s(r, n) =

max(r, s(n)). This will allow us to find the global maximum in two 1-dimensional searches;

put r = 2 and find s(n), and then find the value of r that maximizes Qn(r, s(n)).

Lemma 3.3. For each r,Qn(r, s) is unimodal in s , r ≤ s ≤ n . In fact, for r > 1 ,

Qn(r, s + 1) ≤ Qn(r, s) if, and only if, θs = 1/s , or s ≥ s(n) , where

(3.5) s(n) = min{s ≥ 1 : s
n

≥ Qn(s + 1, s+ 1)} .
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Proof. Computing the difference ∆sQn(r, s) = Qn(r, s + 1)−Qn(r, s), we find

∆sQn(r, s) =
2
s
β(r, s)(1 − sθs)[Qn(s + 1, s+ 1)−

s

n
] .

Therefore, for r > 1, Qn(r, s + 1) ≤ Qn(r, s) if and only if sθs = 1 or the term in

square brackets is nonpositive. The s(n) of (3.5) is the smallest s for which this term is

nonpositive. Assume that the inequality in (3.5) is satisfied; we are to show that it is also

satisfied if s is replaced by s+ 1. Inequality (3.5) gives

n∑
s+1

α(s, j − 1)(2 − nθjα(j, n)) = (2− nθs+1α(s + 1, n))

+ (1− 2
s + 1

+ θs+1)
n∑

s+2

α(s + 1, j − 1)(2 − nθjα(j, n)) ≤ s ,

or, equivalently,
n∑

s+2

α(s + 1, j − 1)(2− nθjα(j, n)) ≤ (1−
2

s+ 1
+ θs+1)−1(s− 2 + nθs+1α(s + 1, n)) .

It is sufficient to show that the last term is ≤ (s + 1), or equivalently,

(3.6) θs+1(α(s + 1, n)− (s + 1)/n) ≤ 1/n .

This holds because α(s+1, n) is the probability that both traits maximum at stage s+1

remain maximum overall, and this is less than or equal to the probability that a given trait

maximum at stage s+ 1 is maximum overall, which is (s + 1)/n.

Lemma 3.4. For fixed s , Qn(r, s) is unimodal in r for 1 ≤ r ≤ s . In fact, Qn(r+1, s) ≥

Qn(r, s) if 2r/n − α(r, n) ≤ Qn(r + 1, s) and Qn(r + 1, s) ≤ Qn(r, s) otherwise.

The proof follows that of Lemma 3.3 using Qn(r+1, s)−Qn(r, s) = θr [Qn(r+1, s)+

α(r, n)− (2r/n)] . Details are omitted. The maximizing value of r is r(n, s) where

r(s, n) = min{ r < s : 2r/n − α(r, n) ≥ Qn(r + 1, s) } if nonempty(3.7)

= s otherwise.

From Lemma 3.3, the maximum of Qn(r, s) over values of (r, s) such that 1 ≤ r ≤
s ≤ n occurs on the line s = s(n) or on the line r = s ≥ s(n). In the following theorem,

we rule out the second case.
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Theorem 3.1. The maximum of Qn(r, s) over values of (r, s) such that 1 ≤ r ≤ s ≤ n

occurs at s = s(n) and r = r(n, s(n)) .

Proof. Since

Qn(s, s) =
n∑

j=s

α(s − 1, j − 1)( 2
n
− θjα(j, n)) ,

we find when s ≥ s(n), using the inequality in (3.5),

Qn(s+ 1, s+ 1)−Qn(s, s) =

= (
2
s
− θs)

n∑
s+1

α(s, j − 1)( 2
n
− θj , α(j, n))− (

2
n
− θsα(s, n))

≤ (2
s
− θs)

s

n
− ( 2

n
− θsα(s, n)) = θs(α(s, n) −

s

n
) ≤ 0 ,

as in (3.6). Hence Qn(s, s) is decreasing in s for s ≥ s(n), so that Qn(r, s) takes its

maximum on the line s = s(n).

In order to find the asymptotic behavior of s(n)/n as n → ∞ , we assume that∑∞
1 θj < ∞ . A referee points out that this condition is essentially that with probability

one there are only a finite number of double maxima. First, we find uniform bounds for

the two terms of the sum in (3.5). This is done in the following two lemmas.

Lemma 3.5. If
∑∞

1 θj <∞ , then, as n→ ∞,

max
1≤s≤n

n∑
s+1

α(s, j − 1)θjα(j, n)→ 0 .

Proof. Note that since θj ≤ 1/j ,

α(j, n) ≤ (1− 1
j + 1

) · · · (1− 1
n
) =

j

n
,

and we have
n∑

s+1

α(s, j − 1)θjα(j, n) ≤
n∑

s+1

s

j − 1θj
j

n
≤ 2s
n

∞∑
s+1

θj .

The maximum of this over 1 ≤ s ≤ n is bounded by the larger of the two maxima, over

1 ≤ s ≤
√
n, and over

√
n ≤ s ≤ n , both of which tend to zero:

max
1≤s≤n

2
s

n

n∑
s+1

θj ≤ max
{ 2√

n

∞∑
1

θj , 2
∞∑

√
n+1

θj

}
→ 0 .
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Lemma 3.6. If
∑∞

1 θj <∞ , then, as n→ ∞ ,

(3.8) max
1≤s≤n

{ 2
n

n∑
s+1

α(s, j − 1)− 2s(n − s)
n2

}
→ 0.

Proof. The value of α(s, j − 1) when θj ≡ 0 is

α0(s, j − 1) = (1−
2

s + 1
) · · · (1 − 2

j − 1) =
s(s − 1)

(j − 1)(j − 2)
,

so that
2
n

n∑
s+1

α0(s, j − 1) =
2s(n− s)
n(n− 1) .

Hence,

0 ≤ 2
n

n∑
s+1

α(s, j − 1)− 2s(n− s)
n(n− 1)

=
2
n

n∑
s+1

(α(s, j − 1)− α0(s, j − 1))

=
2
n

n∑
s+1

α0(s, j − 1) (
j−1∏
s+1

(1 +
θi

(i − 2)/i)− 1)

≤ 2
n

n∑
s+1

α0(s, j − 1) (exp{
j−1∑
s+1

θi
(i − 2)/i } − 1)

≤ 2
n

n∑
s+1

α0(s, j − 1) (exp{
s+ 1
s− 1

∞∑
s+1

θi } − 1)

=
2s(n − s)
n(n − 1) (exp{

s+ 1
s− 1

∞∑
s+1

θi } − 1) .

As in the proof of Lemma 3.5, the maximum over 1 ≤ s ≤ n goes to zero because the

maximum over 0 ≤ s ≤
√
n and over

√
n ≤ s ≤ n both go to zero. From this, (3.8) follows

without difficulty.

Theorem 3.2. If
∑∞

1 θj <∞ , then s(n)/n→ 1/2 as n→ ∞ .

Proof. From Lemmas 3.5 and 3.6, we can find for every ε > 0 an N sufficiently large

that for all n > N and all s ≤ n ,∣∣∣∣∣
n∑

s+1

α(s, j − 1) ( 2
n
− θjα(j, n))−

2s(n− s)
n2

∣∣∣∣∣ < ε .
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Hence for n > N , s(n) is between the two bounds,

s±(n) = min{ s ≥ 1 : 2
s

n
(1 − s

n
) ≤ s

n
± ε }

from which we may deduce ∣∣∣∣ s(n)n − 1
2

∣∣∣∣ ≤ 2ε+
1
n
.

This implies that s(n)/n→ 1/2 as n→ ∞ .

Next, we find the limiting optimal probability of win for the case
∑∞

1 θj < ∞ , and

show that this value does not depend otherwise on the θj , and that the limit of Qn(r, s)

is independent of the choice of r provided r → ∞ and s/n→ 1/2 as n→ ∞ .

Theorem 3.3. If
∑∞

1 θj < ∞ , then maxr,sQn(r, s) → 1/2 as n → ∞ ; moreover,

Qn(r, s) → 1/2 as n→ ∞ , r → ∞ , and s/n→ 1/2 .

Proof. We upper bound the first term of Qn(r, s) by deleting the −α(j, n) and replacing

β(r, j) by 1:

0 ≤ 1st term of Qn(r, s) ≤
2
n

n∑
j=1

jθj

≤ 2
n

n∑
k=1

∞∑
j=k

θj → 0 , as n→ ∞ .

For the second term of Qn(r, s), we bound β(r, s) by 1 and use Lemma 3.6 as in the proof

of Theorem 3.2 to show that limnQn(r, s) ≤ 1/2. Furthermore, by letting s/n→ 1/2 and

r → ∞ , we get Qn(r, s) → 1/2, since 1 ≥ β(r, s) ≥ 1−
∑∞

r θj → 1 as n→ ∞ .

Finally, we show that the limiting value of r(n, s(n))/n also does not depend upon

the detailed behavior of the sequence θj , provided that
∑∞

1 θj <∞ .

Theorem 3.4. If
∑∞

1 θj <∞ , then r(n, s(n))/n → 1− 1/
√
2 = .293 · · · as n→ ∞ .

Proof. From Theorem 3.3, Qn(r, s(n))→ 1/2 so that from (3.7), we see that r(n, s(n))/n

is at least 1/4 in the limit. Thus, r(n, s(n)) tends to ∞ . Using the inequalities,

r(r − 1)
n(n− 1) ≤ α(r, n) ≤ r(r − 1)

n(n − 1) (1 + 2
∞∑

r+1

θi) ,

as in the proof of Lemma 3.6, we may deduce from (3.7) that r(n, s(n))/n → x ∈ (0, 1),

where x satisfies 2x = 1/2 + x2 . The solution to this is x = 1− 1/
√
2.
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§4. The Independent Bivariate Secretary. In this section, we assume that

the two rankings of the n objects are independent. This is equivalent to assuming that

θj = (1/j)2 . From (2.1) and (2.3), we have

(4.1) α(j, n) =
j2

n2
and β(r, j) =

(r − 1)j
r(j − 1) .

Thus, the probability of win if we select the jth object becomes

πj = j/n if object j is a single maximum

(4.2) πj = (j/n)(2− j/n) if object j is a double maximum

πj = 0 otherwise.

From Lemma 3.1, there is an optimal rule of the form R(r, s) for some integers r and

s , with 1 ≤ r ≤ s ≤ n . From Lemma 3.2, we find that the probability of win using R(r, s)

for 2 ≤ r ≤ s ≤ n simplifies to

(4.3) Qn(r, s) =
r − 1
rn2


s−1∑

j=r

2n− j

j − 1 + s(s − 1)(2n − 1)
n∑

j=s

1
(j − 1)2


 .

For r = 1, we have Qn(1, s) = (2n− 1)/n2 .

Finally, we find that the optimal value of s, from Lemma 3.3 and Theorem 3.1, sim-

plifies to s = s(n), where

(4.4) s(n) = min


s ≥ 1 : (2n − 1)s

n−1∑
j=s

1
j2

≤ n


 .

Using the fairly precise bounds for the sum in (4.4) given in the following lemma, we

can find the exact value of s(n).

Lemma 4.1. For 1 ≤ s ≤ n ,

(4.5)
n−1∑
j=s

1
j2
=

(n− s)
(s − .5)(n− .5)

− δ, where 0 ≤ δ <
1
4s3

.

Proof. Since
1
j2
=

1
j − .5

− 1
j + .5

− 1
4j2(j2 − .25)

,
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we have (4.5) with

δ =
n−1∑
j=s

1
4j2(j2 − .25)

.

Clearly δ ≥ 0. The other inequality follows from

δ ≤
∞∑

j=s

1
4j2(j2 − .25)

≤ 1
4s2

∞∑
j=s

1
(j − .5)(j + .5)

=
1

4s2(s + .5)
≤ 1
4s3

.

Theorem 4.1. s(n) = 
(n+ 1)/2� (the smallest integer ≥ (n+ 1)/2) .

Proof. From (4.5)

(2n− 1)s
n−1∑
j=s

1
j2
= (2n− 1)s

[
n− s

(s − .5)(n− .5)
− δ

]
.

Since δ > 0, the inequality in (4.4) is satisfied if the weaker inequality, in which δ is

ignored, is satisfied:

2s(n − s) ≤ n(s − .5) .

Upon solving for n , this inequality becomes

n+ 1
2

≤ s +
1

4s+ 2
.

In particular, if s ≥ (n+1)/2, this inequality is satisfied. This shows that s(n) ≤ (n+2)/2.

The reverse of the inequality in (4.4) is satisfied if the weaker inequality, in which δ

is replaced by 1/(4s3), is satisfied. In particular, if s ≤ n/2, then

(2n − 1)s
[

n− s

(s− .5)(n − .5)
− 1
4s3

]
≥ (2n− 1)s

[
n/2

(s − .5)(n − .5)
− 1
4s3

]

= n+
n

2s − 1 −
2n− 1
4s2

> n+
n

2s
− n

2s2
≥ n.

This implies s(n) ≥ (n + 1)/2, completing the proof.

One can find upper and lower bounds for the optimal r(n) = r(n, s(n)) in a similar

manner. Instead, we use an asymptotic analysis. Using (4.1) and (4.3), we may write (3.7)

as

(4.6) r(n, s) = min

{
r : (r + 1)(2n − r − 1) ≥ z(s)− s +

s−1∑
r+1

1
j − 1

}

12



where

z(s) = s(s − 1)(2n − 1)
n∑
s

1
(j − 1)2 .

Then, using s(n) = n/2+O(1) as n→ ∞ , we find z(s(n))/n2 = (1/2)(1+3/n)+O(1/n2).

Moreover, since r(n)/n → φ = 1− 1/
√
2, we find

s∑
r+1

1
j − 1 = − log(2φ) +O(1/n) .

Combining these into (4.6) gives

r(n, s(n)) = min
{
r :

(r + 1)(2n− (r + 1))
n2

≥ 1
2
(1 +

2
n
− 1
n
log(2φ) ) +O(

1
n2
)
}
.

Solving the quadratic inequality for (r + 1), we find

(4.7) r(n, s(n)) = �nφ+ λ+O(1/n)�

where λ = (1 − 2 log(2φ))/
√
2 = 1.463428 · · · . Surprisingly, numerical calculations show

that the approximation, r(n, s(n)) = �nφ+ λ� , is valid for all values of n < 10000.

Table 4.1. Optimal values of r , s, Qn(r, s) and Qn(s).

n r s Qn(r, s) Qn(s) n r s Qn(r, s) Qn(s)

1 1 - 1.0000 1.0000 10 4 6 0.5647 0.5556
2 1 - 0.7500 1.0000 20 7 11 0.5325 0.5263
3 2 2 0.6944 0.6667 30 10 16 0.5217 0.5172
4 2 3 0.6615 0.6667 40 13 21 0.5163 0.5128
5 2 3 0.6175 0.6000 50 16 26 0.5130 0.5102
6 3 4 0.6055 0.6000 60 19 31 0.5109 0.5085
7 3 4 0.5872 0.5714 70 21 36 0.5093 0.5072
8 3 5 0.5803 0.5714 80 24 41 0.5082 0.5063
9 4 5 0.5668 0.5556 90 27 46 0.5073 0.5056

In Table 4.1, the values of the optimal r and s and probability of win in the inde-

pendent case (4.3), and in the perfect negative dependent case (2.1), are given for various

values of n . Since the win probability in the independent case is greater than the win

probability in the perfect positive dependent case, one might suspect that the optimal

13



probability of win in the perfect negative dependent case would be greater yet. That this

is true for only two values of n is seen in the table.

§5. Ranking Models and Sampling Models. The perfect positive dependence

case, (1.4(a)), is equivalent to the standard best-choice problem in which the optimal s/n

and the optimal probability of win both tend to e−1 = .3679 · · · as n→ ∞ . For both the

independent case (1.4(b)) and the perfect negative dependence case (1.4(c)), the optimal

s/n and the optimal probability of win tend to 1/2 as n → ∞ . It is natural to wonder

what happens when the two traits have intrinsic values given, say, by a bivariate normal

distribution with zero means, unit variances and a correlation coefficient ρ . This leads us

to sampling models, ranking models, and to the reasons why the ranking model in section

1 may be unrealistic.

In the univariate case, the sampling model and the ranking model are equivalent. In

the sampling model, the relative rankings of the objects are given as the actual rankings

of their intrinsic worths, Z1, . . . , Zn , with the assumption,

Z1, . . . , Zn are i.i.d. F (z), continuous,(5.1)

Rj = rank of Zj among Z1, . . . , Zj .

All the decision maker sees are the relative ranks, R1, . . . , Rn , of the Z ′ s. In the ranking

model, the decision maker observes the relative ranks, R1, . . . , Rn , directly, where it is

assumed that

(a) R1, . . . , Rn are independent.(5.2)

(b) For all j, P (Rj = r) = 1/j for r = 1, . . . , j.

It is not necessarily assumed that the objects have intrinsic worths. These models are

equivalent in the sense that (5.1) implies (5.2). This equivalence does not depend on F ,

and we may take F to be the uniform distribution on the interval (0,1) by applying F−1

to each observation.
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For the independent m-variate case, a similar equivalence holds. But when the traits

are dependent, there are immediate differences. The sampling model is given by

Z1, . . . ,Zn are i.i.d. F (z) with continuous marginals.(5.3)

Rij = rank of Zij among Zi1, . . . , Zij .

First of all, the vectors R1, . . . ,Rn of relative ranks are not necessarily independent,

and second, although the marginal distribution of Rij is uniform on {1, . . . , j} , the joint
distribution of R1j , . . . , Rmj depends on F . There are some general lower bounds on

the optimal value given in Theorem 2 of Berezovskii et al (1986) that are valid for both

ranking models and sampling models and are found using threshold rules. For the m-

dimensional nonsingular multivariate normal distribution, the lower bound is asymptotic

to (1/m)1/(m−1) for m > 1, giving 1/2 for the bivariate case.

The differences in the two models may be illustrated by examples in the bivari-

ate case, even when we restrict the observations to the occurences of relative maxima.

The results of Samuel and Chotlos (1985) require the entire relative ranks and are even

more difficult to generalize to dependent sampling models. We take m = 2 and let

(Z11, Z21), . . . , (Z1n, Z2n) denote the vectors of the intrinsic worths of the objects, as-

sumed to be i.i.d. with distribution F (z). As in the independent case, we may assume

without loss of generality that the marginal distributions of Z11 and Z21 are uniform on

the interval (0,1), denoted by U(0, 1).

Example. Let Z11 be U(0, 1) and for some 0 < δ < 1, let

Z21 = δ − Z11 if Z11 < δ, and Z21 = Z11 if Z11 > δ .

Then Z21 is also U(0, 1) and the correlation coefficient, ρ = 1− 2δ3 , goes from −1 to +1

as δ goes from 1 to 0. As in section 1, we let Xj (resp. Yj ) be the indicator function of the

event thatZ1j (resp. Z2j ) is a relative maximum for the first (resp. second) coordinate,

then we can see that (1.1(a)) is not satisfied for any 0 < δ < 1 :

Pδ(X3 = 1, Y3 = 1 |X2 = 1, Y2 = 0) = Pδ(X3 = 1, Y3 = 1 |X2 = 0, Y2 = 1) = 1− δ,

Pδ(X3 = 1, Y3 = 1 |X2 = 0, Y2 = 0) = Pδ(X3 = 1, Y3 = 1 |X2 = 1, Y2 = 1)

= (1− δ)(1 + 2δ)/(3(1 + δ)).
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This implies that when making a decision at stage j , data gathered before stage j cannot

be ignored.

Suppose at stage two we observe X2 = Y2 = 1. For any fixed n , if δ is sufficiently

close to 1, this object is very likely to be the best in both traits and we should select it.

In other words, the fact that a joint maximum occurred gave us a good idea as to the

intrinsic worth of the object.

Another difficulty arises because sufficiency does not reduce the data. At any stage j ,

we must remember not only how many double maxima and single maxima occurred, but

when they occurred. For example, let d denote a double maximum, s a single maximum

and n neither maximum. Then, observing the sequence d, s, d, n, . . . , n, n, n is different

from observing d, s, n, n, . . . , n, n, d because in the former the n ’s have a chance to be asso-

ciated with Z1i ’s > δ ; thus, Pδ(d next | d, s, d, n, . . . , n) < Pδ(d next | d, s, n, . . . , n, d).

Thus, solving any given dependent sampling model for general n looks very difficult.

It is unknown whether or not there exists a sampling model that gives rise to (1.1(a)),

except for the three cases of (1.4).

§6. The (Best-Choice)m Problem. We look briefly at the problem with m ≥ 2
traits and in which to win you must select the object, if any, which is best in all traits.

This problem was treated for m = 2 in Stadje (1980). Since we assume the traits are

independent, the probability that there is an object which is best simultaneously in all

traits is only 1/n(m−1) ; so the probability of a win is at most 1/n(m−1) . We consider the

questions: How much smaller than 1/n(m−1) is the optimal probability of win, and what

does the optimal strategy look like?

By the argument of Lemma 3.1, it follows that there is an optimal rule, call it R(s), of

the form: Reject the first s− 1 objects and then select the next object which is relatively

best in all traits. The probability of win, Qn(s), using such a rule may be written as:

Qn(s) = n−m
n∑

j=s

j−1∏
k=s

(1− k−m) .

Theorem 6.1. The optimal value of s is s(n) , where

(6.1) s(n) = min{ s ≥ 1 : Qn(s + 1) ≤ sm/nm } .
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As n→ ∞ , s(n)m/n→ 1 and nm−1Qn(s(n))→ 1 .

Proof. To find the optimal value of s , we look at the differences,

nm [Qn(s + 1)−Qn(s) ] = s−m
n∑

j=s+1

j−1∏
k=s+1

(1 − k−m) − 1 .

This is decreasing in s , so the optimal value of s is given by (6.1). Using this, we find

lower and upper bounds for s = s(n):

(6.2)

(a)
n∑

j=s+1

j−1∏
k=s+1

(1− k−m) ≤ sm

(b)
n∑

j=s

j−1∏
k=s

(1− k−m) > (s − 1)m .

From (b), (s − 1)m < n− s+ 1, so limsup sm/n ≤ 1. From (a),

sm ≥
n∑

j=s+1

(1−
j−1∑

k=s+1

k−m) ≥ n− s − n
n−1∑
s+1

1/km ≥ n− s − n/sm−1,

so lim inf sm/n ≥ 1. Thus, lim sm/n = 1, and from (6.1) we also have

lim nm−1Q(s(n)) = 1.

We see that the optimal rule waits until about n1/m of the observations have been

made, and then selects the next object, if any, that is best in all traits. Using more precise

bounds for the terms in (6.1), we can find some very precise estimates of s(n). We treat

separately the cases m = 2 and m > 2.

First assume m > 2 and s = O(n1/m). Then, using the elementary expansions,

n∏
k=s+1

(1 − k−m) = 1−
n∑

k=s+1

k−m +O(s−2m−2)(6.3)

and
∞∑

k=s+1

k−m =
s−(m−1)

m− 1 − s−m

2
+O(s−(m+1)) ,(6.4)

we find,
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n∑
j=s+1

j−1∏
k=s+1

(1− k−m) =
n∑

j=s+1

(1−
j−1∑

k=s+1

k−m) +O(ns−2m−2)

= n− s− n
n∑

s+1

k−m +
n∑
s

k−m+1 +O(s−m−2)

= n− s− ns−(m−1)

m− 1 +
ns−m

2
+O(s−1) ,

from which we can obtain a very accurate approximation for s(n) as the smallest integer

greater than the solution of

(6.5) sm = n− ms

m− 1 +
1
2

A simple approximation for s(n) is found by replacing s in the left side of (6.5) by n1/m

and solving for s . However, it is more accurate to use one iteration of Newton’s method

with s = n1/m as the initial value. This leads to the approximation

s(n) ∼
⌈

n+ 1/2m
n(m−1)/m − 1/(m− 1)

⌉
.

For m = 3, I could find no values of n for which this did not give the correct answer.

For m = 2, the formula for Qn simplifies to

Qn(s) = n−2
n∑

j=s

s− 1
s

j

j − 1

so that s(n) reduces to

s(n) = min


 s ≥ 1 : n+ 1 +

n−1∑
j=s

1
j

≤ (s + 1)2

 .

From this, we can derive a very good approximation to s(n) when m = 2 :

s(n) ∼
⌊(

n+ 1 +
log(n)
2

)1/2
⌋
.

This gives the optimal value of s when n ≤ 10000 in all but five cases (n = 7, 46, 357,

396, 2911) .
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