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Abstract
We consider a generalization of the house-selling problem to selling k

houses. Let the offers, X1,X2, . . ., be independent, identically distributed

k-dimensional random vectors having a known distribution with finite second

moments. The decision maker is to choose simultaneously k stopping rules,

N1, . . . , Nk , one for each component. The payoff is the sum over j of the jth

component of XNj minus a constant cost per observation until all stopping

rules have stopped. Simple descriptions of the optimal rules are found. Ex-

tension is made to problems with recall of past offers and to problems with a

discount.
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§1. Introduction and Summary. You own k objects. Each day you receive a

vector of offers, say Xn = (X(1)
n , . . . ,X

(k)
n ) on day n, where X

(j)
n represents that day’s

offer for the jth object. It is assumed that X1,X2, . . . are independent and identically

distributed having a known k-variate distribution with finite second moments. There is a

cost of c > 0 per vector of observations. At each stage you may sell none, any one, any

two, . . . , or all of the objects. You are to continue until all objects are sold. Your payoff is

the sum of the selling prices of the objects minus c times the number of vectors observed.
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This problem was suggested to us by James B. MacQueen who modeled it as a buying

problem. You want to buy Christmas presents for your two children. After deciding which

two presents to buy, you go to various stores. With two presents to buy, you can be a little

more choosy. If the price of one of the gifts is clearly too high, you know you will have to

go to another store anyway, so you will reject a borderline price for the other gift.

This problem is a multidimensional generalization of the celebrated house-selling prob-

lem, introduced by MacQueen and Miller (1960), Derman and Sacks (1960), Chow and

Robbins (1961), and Sakaguchi (1961). In the economics literature, this problem is known

as the job search problem and traced back to Stigler (1961, 1962). See Collins and Mc-

Namara (1990, 1993) for recent work and McMillan and Rothschild (1994) for a review of

this aspect of the problem.

Various multiple house-selling problems have already appeared in the literature. The

original paper of MacQueen and Miller (1960) contains an extension to the problem of

selling k identical objects when single offers come in daily, and recall of past offers is

allowed. The paper of Karlin (1962), contains a discussion of the problem of selling two

identical objects with finite horizon and no cost, with one offer per time period and no

recall of past offers. This has been generalized by Derman, Lieberman and Ross (1972),

Albright (1974) and others (see Righter (1990)) to selling non-identical objects with one

offer per time period. It has also been generalized by Saario (1986), Stadje (1985, 1990)

and Saario and Sakaguchi (1990) to selling k identical objects with cost, finite horizon and

random arrival of offers. The only treatment of house-selling problems with vector offers,

seems to be by Sakaguchi (1973 and 1978), but this appears in a game-theoretic setting

in which two players must agree to stop and accept the present bivariate offer, and the

problem is to find equilibrium points.

In the case of vectors of independent identically distributed offers, one could set up a

classical multiple house-selling model with batch arrivals to treat this problem. However,

one would need the rather unnatural assumption that the batch sizes be exactly equal to

the number of objects remaining to be sold. The closest to this approach in the literature

seems to be the paper of Nakai (1986). But in his paper, there is a finite horizon rather

than a cost, and the sizes of the batches are random with binomial distributions.
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In Section 2, we treat completely the problem of selling two objects and indicate the

effect of dependence of the offers on the optimal return. In Section 3, we treat the general

problem and note an interesting convexity property of the value function. In Section 4,

we solve the problem when recall of past offers is allowed. In the one object case, there

is no difference between the optimal rules for selling with or without recall, as observed

by Chow and Robbins (1961). For selling several objects, the rules become quite distinct,

and the methods of treatment are different as well. In Section 5, some models in which

the cost is replaced by a discount are investigated.

§2. Selling two objects. We specialize the description of the problem in the intro-

duction to k = 2 objects and denote the sequence of vector offers by (X1, Y1), (X2, Y2), . . .,

assumed to be i.i.d. with finite second moments.

Once one object is sold, the problem reduces to the standard house-selling problem.

From the general theory, see for example Chow, Robbins and Siegmund (1971), it is known,

under the condition that the second moments be finite, that an optimal rule exists and

is given by the principle of optimality. Furthermore, the optimality equation holds. Let

Vx and Vy denote the optimal values of the problems of selling the x-object and y-object

separately. These values are the unique solutions of the optimality equations,

(1) E(X − Vx)+ = c and E(Y − Vy)+ = c.

Theorem 1. In the problem of selling two objects with i.i.d. vector offers having finite

second moments, an optimal rule exists and the value, Vxy, is the unique solution of the

equation,

(2) Vxy = Emax{X + Y,X + Vy, Y + Vx, Vxy} − c.

Proof. We frame the problem as a stopping rule problem where stopping is identified with

selling at least one object. If we stop at stage n having observed (Xn, Yn), we may choose

to sell both objects and receive Xn +Yn, sell the x-object alone and receive Xn +Vy, or sell

the y-object alone and receive Yn + Vx. Thus, if we stop at stage n, we receive Wn − nc,

where Wn = max{Xn + Yn,Xn + Vy, Yn + Vx}. Since the Wn are i.i.d. with finite second
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moments, the general theory implies that an optimal rule exists and that Vxy is the unique

solution to the optimality equation, Vxy = Emax{W1, Vxy} − c. This reduces to equation

(2).

The optimal rule given by the principle of optimality is to continue sampling until

Wn ≥ Vxy, and then to stop and sell both objects if Xn + Yn = Wn, the x-object alone if

Xn + Vy = Wn, and the y-object alone if Yn + Vx = Wn. The following lemma helps us to

simplify this description.

Lemma 1. The value function is superadditive, namely, Vxy > Vx + Vy.

Proof. Vx + Vy is the optimal return for selling each of the objects separately. When

selling them together, one can use the same individual strategies and even only have to

pay one c per observation until the first of them is sold.

In fact this argument shows something stronger, that V + c is superadditive, namely,

Vxy ≥ Vx + Vy + c.

Theorem 2. An optimal rule for the 2-object problem at stage n is as follows. Sell the

x-object if Xn ≥ Vxy − Vy. Else, sell the y-object if Yn ≥ Vxy − Vx. Else, sell both objects

if Xn + Yn ≥ Vxy. If one object is sold, revert to the optimal strategy for selling the other

object before looking at the next observation. Else, continue to stage n + 1.

Proof. From Lemma 1, the expectation in (2) reduces to the sum of the integrals over

the four regions,

A1 = {X > Vxy − Vy, Y < Vy}
A2 = {Y > Vxy − Vx,X < Vx}
A3 = {X < Vxy − Vy, Y < Vxy − Vx,X + Y < Vxy}
A4 = {X > Vx, Y > Vy,X + Y > Vxy}.

The rule given by the principle of optimality is to sell both objects in region A4, in region

A1 sell the x-object only, in region A2 sell the y-object only, and sell neither object in

region A3 (see Figure 1). Thus, we always sell the x-object if X ≥ Vxy − Vx. And if this

is the case, we sell the y-object as well if Y ≥ Vy, which is the optimal strategy for selling
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Figure 1. The optimal regions.
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one object. In this way, we may reduce the description of the optimal strategy to that

given in the theorem.

§2.1 Example. Suppose that X and Y are independent and identically distributed

according to the uniform distribution on the interval (0,1). Then as found in DeGroot

(1970) for example, equations (1) reduce to

(3) Vx = Vy =
{

1−
√

2c if c ≤ 1/2
−c + (1/2) if c ≥ 1/2.

Let V1 = Vx = Vy. For 0 < c ≤ 1/2, the respective parts of the integrals in Equation (2)

over the four regions become,

A1 : V1((1 + V1)2 − V 2
xy)/2

A2 : V1((1 + V1)2 − V 2
xy)/2

A3 : Vxy(V 2
xy − 2V 2

1 )/2

A4 : (1 − V1)2(1 + V1) − (Vxy − 2V1)2(Vxy + V1)/3.

Adding these, we find that equation (2) becomes

Vxy + c = (1/6)V 3
xy − V 2

1 Vxy + 1 + V 2
1 + (2/3)V 3

1 .
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If c = .1, then V1 = .5528 and Vxy = 1.2730. The optimal rule is to accept any one offer

greater than Vxy − V1 = .7202. Otherwise, accept both offers if the sum is greater than

Vxy = 1.2730. Once one object has been sold, accept any offer for the other greater than

V1 = .5528.

For 1/2 ≤ c ≤ 1, the integral in (2) over A1 and A2 is zero, while the integral over

A3 is V 3
xy/2 and the integral over A4 is 1 − (1/3)V 3

xy . The resulting equation is

(4) Vxy + c = (1/6)V 3
xy + 1.

An interesting phenomenon occurs in this case. Namely, that if we were selling each object

separately, we would accept the first offer that comes in. Here, in selling two objects, we

would refuse both offers if the sum of the offers is less than Vxy.

Finally, if c ≥ 1, we accept the first offers that come in and the value is Vxy = 1 − c.

§2.2 Dependence. It is of interest to see what effect dependence of the variates

has on the optimal rules and the expected return. We look at two cases, with X and

Y ∈ U(0, 1) having perfect positive dependence and perfect negative dependence. The

conclusion is that positive dependence tends to improve the optimal return and negative

dependence to worsen it; however, we have no general results along these lines.

Case 1: Perfect positive dependence, Y = X. Clearly, we accept both or neither.

Thus, the problem is as if there was one object to sell, the cost is divided by 2 and the

optimal return is multiplied by 2. For c ≤ 1, the value is Vxy = 2(1 −
√

c) (for k objects

with perfect positive dependence it would be k(1−
√

2c/k)), and the optimal rule is to sell

both objects if their common value is at least 1 −
√

c. For c = .1, we have Vxy = 1.3675.

Case 2: Perfect negative dependence, Y = 1−X. The optimality equation (2) becomes,

Vxy = Emax{1,X +V1, 1−X +V1, Vxy}− c. If c ≤ 1/8, then V1 ≥ 1/2 and the first option

of selling both objects is never taken. This becomes the multiple house selling problem

of Saario and Sakaguchi (1990) in which the objects are always sold separately and we

have Vxy = V1 + 1 −
√

c. For c = .1, this reduces to Vxy = 1.2366. For 1/8 < c ≤ 1/2

(0 ≤ V1 < 1/2), if one object has an offer of at least 1 − V1, we sell just that object;

otherwise we sell both objects. If c > 1/2 (V1 < 0), we always sell both objects.
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§3. Selling Many Objects. Suppose that there are k objects to be sold and let

the vectors of offers be denoted by X1,X2, . . .. It is assumed that these random vectors

are i.i.d. copies of a random vector X = (X1, . . . ,Xk) with finite second moments. Let

K = {1, 2, . . . , k} denote the set of objects to be sold. For a subset S ⊂ K, we let V (S)

denote the expected return using an optimal policy for selling the objects in S. If S consists

of a single point, then V (S) is found as in Equation (1). If S consists of two points, then

V (S) may be found from Equation (2). The following theorem states that the main result

of the previous section still holds, and the values, V (S), may be found by induction. Let

Sc denote the complement of the set S in K and let V (∅) = 0 where ∅ denotes the empty

set.

Theorem 3. In the problem of selling k objects with i.i.d. offers having finite second

moments, an optimal rule exists and the value, V (K), may be found inductively as the

unique solution of the equation,

(5) V (K) = E max
∅⊆S⊆K

{
∑
i∈S

Xi + V (Sc)} − c.

The proof is an extension of the proof of Theorem 1.

§3.1 Description of the Optimal Rule. From (5), we can obtain the form of the

optimal strategy. If Xn is written as (X1,n, . . . ,Xk,n) and if at stage n, K represents the

set of unsold objects, then the optimal rule given by the principle of optimality is to sell the

objects in some subset S0 for which
∑

i∈S0
Xi,n+V (Sc

0) = max∅⊆S⊆K{
∑

i∈S Xi,n+V (Sc)}.
If this maximum occurs for S0 = K, then all objects are sold and we stop. After the objects

in S0, if any, are sold, we continue to the next stage using an optimal policy for selling the

objects in Sc
0. This continues until all objects are sold.

We may simplify this description of the optimal policy but we require the following

generalization of Lemma 1. We are indebted to Fred Delbaen for the proof. The conclusion

is that the value function, V (S), satisfies (7) below. In game theory, such value functions

are called convex and play a role in the theory of the core. See Shapley (1971).

This lemma is stated in somewhat greater generality than is needed for this paper. In

particular, it is not necessary to assume that the vectors X1,X2, . . . are independent or
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identically distributed. This will be important in the extension of these results to adaptive

problems in which the distribution of the X’s is only partially known.

A stopping vector for this problem is a vector, τ = (τ1, . . . , τk), of stopping rules τi,

each adapted to the same sequence of σ-fields, {Fn}∞n=1, where Fn contains the σ-field

generated by X1, . . . ,Xn. (This definition requires, for example, that once an object is

sold, we may still observe the future offers for it.) Let T denote the set of all stopping

vectors. Then for a set A ⊆ K, the value is defined as

(6) V (A) = sup
τ∈T

E(
∑
j∈A

Xj,τj − c max(τj : j ∈ A)).

The only assumptions on the Xi that we use is that the expectation in (6) exists for all

τ ∈ T and A ⊆ K and that V (S) < ∞ for all S in K.

Lemma 2. For arbitrary A ⊆ K and B ⊆ K,

(7) V (A) + V (B) ≤ V (A ∪ B) + V (A ∩ B).

Proof. (F. Delbaen, private communication, 1994) Let a1, a2, . . . , ak and b1, b2, . . . , bk be

real numbers. Then

(8)
max{a1, a2, . . . , ak} + max{b1, b2, . . . , bk}

≥ max{a1 ∨ b1, a2 ∨ b2, . . . , ak ∨ bk} + max{a1 ∧ b1, a2 ∧ b2, . . . , ak ∧ bk}.

To see this, let a∗ and b∗ denote the maximum of the aj ’s and bj ’s respectively, and suppose

first that a∗ ≥ b∗. The inequality (8) reads a∗ +b∗ ≥ a∗ +max{a1∧b1, a2∧b2, . . . , ak ∧bk},
or equivalently, max{a1 ∧ b1, a2 ∧ b2, . . . , ak ∧ bk} ≤ b∗, which is evident. The case a∗ ≤ b∗

follows from symmetry.

Now let σ = σ(A) and τ = τ (B) be ε-optimal stopping vectors for A and B respec-

tively. Now the value of σ does not depend on the components σj for j 
∈ A. We extend

the definition by putting Xj,0 = 0 for all j ∈ K and changing σj = 0 (resp. τj = 0) for all

j 
∈ A (resp. j 
∈ B). Then V (A) + V (B) may be written

V (A) + V (B) ≤ E(
∑
j∈K

(Xj,τj + Xj,σj ) − c(max{τ1, . . . , τk} + max{σ1, . . . , σk}) + 2ε

= E(
∑
j∈K

(Xj,τj∨σj + Xj,τj∧σj ) − c(max{τ1, . . . , τk} + max{σ1, . . . , σk}) + 2ε.
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Now use the inequality (8) for the sum of the maxima in the c-term. Note that αj := τj∨σj

and βj := τj ∧σj are again stopping times vanishing on (A∪B)c and (A∩B)c respectively.

Since they are suboptimal on A ∪ B and A ∩ B respectively, we immediately obtain

V (A) + V (B) ≤ V (A ∪ B) + V (A ∩ B) + 2ε

for all ε > 0. This gives inequality (7).

We remark that this proof shows the slightly stronger result that inequality (7) holds

even if V (∅) were defined to be −c.

Theorem 4. Suppose at stage n, K represents the set of unsold objects. Let Sm be the

class of subsets of K of size m. Let

(9) Wm = max
S∈Sm

[
∑
i∈S

Xn,i + V (Sc)]

and let Sm be any element of Sm achieving equality in (9). The optimal rule may be

described as follows. If Wm < V (K) for all m, sell no objects and go to the next stage.

Otherwise, find the smallest m > 0 such that Wm > V (K) and sell the objects in Sm.

After selling the objects in Sm revert to this rule for selling the objects in Sc
m, if any, before

looking at the next vector, Xn+1.

Proof. Let m and Sm be as described in the theorem and let T ⊆ K. We will show that

selling the objects in T ∪Sm is at least as profitable as selling the objects in T . Then in any

case it is optimal to sell the objects in Sm. If Sm ⊆ T , we are done. So assume Sm 
⊂ T .

Then |T ∩ Sm| < m, so from the definition of m, we have
∑

i∈T∩Sm
Xi + V ((T ∩ Sm)c) ≤∑

i∈Sm
Xi + V (Sc

m). Hence,

∑
i∈T

Xn,i + V (T c) =
∑

i∈T∩Sm

Xn,i +
∑

i∈T−Sm

Xn,i + V (T c)

≤
∑

i∈Sm∪T

Xn,i + V (T c) + V (Sc
m) − V (T c ∪ Sc

m)

≤
∑

i∈T∪Sm

Xn,i + V (T c ∩ Sc
m) from Lemma 2

=
∑

i∈T∪Sm

Xn,i + V ((T ∪ Sm)c).
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We may also use Lemma 2 to simplify the description of the sets, A(S), of points in

the sample space for which it is optimal to sell the objects in S and none of the objects in

Sc. From the principle of optimality,

(10) A(S) = {
∑
i⊂S

Xi + V (Sc) ≥
∑
i∈T

Xi + V (T c) for all T 
= S}.

The number of inequalities in this representation of the set A(S) is 2k − 1.

In the following theorem, a representation of A(S) is given that uses only (2m − 1) +

(2k−m − 1) inequalities, where m = |S|. We show that A(S) is exactly the set of points

in the sample space for which the sale of any subset of objects of S contributes at least as

much its or their expected contribution (increment) of gain under an optimal policy later

on, and for which, at the same time, all other subsets completely in the complement of

S are worth keeping unsold, since their expected contribution to the future expected gain

under an optimal sales policy is larger than their present contribution.

Theorem 5.

(11)

A(S) = {
∑
i∈T

Xi ≥ V (T ∪ Sc) − V (Sc) for all ∅ 
= T ⊆ S and

∑
i∈T

Xi ≤ V (Sc) − V (Sc − T ) for all ∅ 
= T ⊆ Sc}.

Proof. First suppose X satisfies the inequalities of (11). Consider an arbitrary T ⊆ K,

T 
= S and cancel Xi for i ∈ S ∩ T from both sides of equation (10). We are to show

∑
i∈T−S

Xi + V (T c) ≤
∑

i∈S−T

Xi + V (Sc).

Since T − S ⊂ Sc and S − T ⊂ S, we have from (11)

∑
i∈T−S

Xi + V (T c) ≤ V (Sc) − V (Sc ∩ (T − S)c) + V (T c)

= V (Sc) − V (Sc ∩ T c) + V (T c)

≤ V (Sc ∪ T c) = V ((S − T ) ∪ Sc)

≤
∑

i∈S−T

Xi + V (Sc)
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as was to be shown.

Now suppose X satisfies the inequalities of (10). Then for T ⊆ S,

∑
i∈T

Xi =
∑
i∈S

Xi −
∑

i∈S−T

Xi ≥ V ((S − T )c) − V (Sc) = V (Sc ∪ T ) − V (Sc),

and for T ⊆ Sc,

∑
i∈T

Xi = −
∑
i∈S

Xi +
∑

i∈S∪T

Xi ≤ V (Sc) − V ((T ∪ S)c) = V (Sc) − V (Sc − T ).

§3.2. Selling k identical objects. In the case of k identical objects with i.i.d.

offers, the description of the optimal rule is easy. Let the offers be denoted by X1, . . . ,Xk.

(Independence of X1, . . . ,Xk is not required for this result; exchangeability suffices.) Let

Vj represent the value of the problem with j identical objects (e.g. Vxy = Vxz = V2 etc.)

and let V0 = 0). The optimality equations become, inductively in k,

(12) Vk = E{ max
0≤j≤k

max
S∈Sj

[(
∑
i∈S

Xi) + Vk−j ]} − c

where Sj is the set of all subsets of size j in {1, 2, . . . , k}. The optimal rule is as follows.

Order the offers in decreasing order, X1 ≥ X2 ≥ . . . ≥ Xk. If X1 ≥ Vk − Vk−1, accept

X1. Otherwise, if X1 + X2 ≥ Vk − Vk−2, accept X1 and X2. Otherwise, . . .. Otherwise,

if X1 + · · · + Xk ≥ Vk, accept all offers. Otherwise accept no offers. Once any objects are

sold, revert to the optimal strategy for selling the remaining objects (before looking at the

next vector of offers).

The argument is straightforward and does not even use convexity. With the Xi ar-

ranged in decreasing order, the inside maximum in (12) occurs at X1 + · · · + Xj + Vk−j

for some j. If it is optimal to accept anything, it is optimal to accept at least X1.

So, if X1 ≥ Vk − Vk−1, it is optimal to accept X1. Similarly, if X1 < Vk − Vk−1 but

X1 + X2 ≥ Vk − Vk−2, it is optimal to select both X1 and X2 at least. And so forth.

§3.3 Example. As an illustration, consider the case k = 3 with independent uniform

(0,1) random variables. We solve the optimality equations (12) for V1, V2 and V3. In

Example 2.1, the values of V1 and V2 were found as functions of c. The expectation in
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(12) breaks down into eight regions, as in Theorem 5, but only four have distinct values

because the variables are exchangeable. Through straightforward but tedious integration

separately over these regions, we may find the expectation in (12) separately for four cases.

For 0 < c ≤ 1/2, the expectation in (12) is

3
2

+
3
2
V 2

1 + 2V 3
1 +

3
8
V 4

1 − 3V 2
1 V2 −

3
2
V 2

1 V 2
2 +

1
2
V 3

2 +
3
8
V 4

2 − V 3
1 V3

+3V 2
1 V2V3 −

1
2
V 3

2 V3 −
3
4
V 2

1 V 2
3 +

1
24

V 4
3 .

Setting this to V3 + c and solving for V3 gives the optimal return. When c = .1, we have

V1 = .5528, V2 = 1.2730, and we find V3 = 2.0354. See Table 1.

For .5 ≤ c ≤ 1, we have V1 < 0, so that (12) reduces to V3 = Emax{X + Y + Z,X +

V2, Y + V2, Z + V2, V3} − c. For 1 ≤ c ≤ 1.5, we have V3 = E max(X + Y + Z, V3) − c, or

equivalently, E(X+Y +Z−V3)+ = c. This reduces to the equation, V 4
3 −24V3+36−24c = 0.

For c > 1.5, V3 = 1.5 − c.

Table 1. Values of V1, V2, and V3 for independent uniform (0,1) offers and various

values of c.

c .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4

V1 .553 .368 .225 .106 0 −.1 −.2 −.3 −.4 −.5 −.6 −.7 −.8 −.9

V2 1.273 1.000 .804 .651 .524 .412 .305 .201 .100 0 −.1 −.2 −.3 −.4

V3 2.035 1.679 1.428 1.235 1.079 .946 .825 .713 .606 .503 .401 .300 .200 .100

§4. Selling the objects with recall. Suppose we are able to accept any of the

past offers. The setup is as follows. We observe X1,X2, . . . sequentially, assumed to be

i.i.d. k-dimensional random vectors with finite second moments. We may observe as long

as we please at a cost of c > 0 per observed vector, and when we stop we may select the

largest offer for each object from among all past offers. Thus our payoff if we stop at stage

n is,
∑k

i=1 M
(i)
n − nc, where

M (i)
n = max{X(i)

1 , . . . ,X(i)
n } for i = 1, . . . , k.
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Theorem 6. In the problem of selling k ≥ 1 objects with recall, based on i.i.d. vector

offers having finite second moments, the stopping rule

N1 = min{n ≥ 1 :
k∑

j=1

φj(M (j)
n ) ≤ c}

is optimal, where φj(x) = E(X(j) − x)+ for j = 1, . . . , k.

Proof. We show that N1 is the optimal rule by showing it is the one-stage look-ahead

rule and showing the problem is monotone. If we are at stage n and stop, we would receive

M
(1)
n + · · · + M

(k)
n − nc. If we continue one stage and stop, we expect to receive

(13) E[max{M (1)
n ,X

(1)
n+1} + · · · + max{M (k)

n ,X
(k)
n+1} − (n + 1)c|Fn].

where Fn represents the sigma-field generated by the first n vectors. The one-stage look-

ahead rule calls for stopping as soon as the former is greater than the latter. Namely, we

stop at the first n such that

M (1)
n + · · · + M (k)

n ≥ E[max{M (1)
n ,X

(1)
n+1} + · · · + max{M (k)

n ,X
(k)
n+1} − (n + 1)c|Fn] − c.

Thus, the one-stage look-ahead rule stops at the first n for which

k∑
j=1

φj(M (j)
n ) ≤ c.

Since we have assumed finite second moments, the one-stage look-ahead rule is optimal

provided the problem is monotone. To show the problem is monotone, we must show that

if the one-stage look-ahead rule calls for stopping at stage n then it will call for stopping

with probability one at all future stages. Since the φj(x) are non-increasing in x, we see

that the problem is monotone since M
(1)
n , . . . , M

(k)
n are almost surely nondecreasing.

It is of interest to note that the optimal rule depends on the joint distribution of the

offers only through the marginal distributions.

As an example, suppose the X(j) have marginal uniform distributions on the interval

(0,1). The functions φj become φj(x) = (1 − x)2/2, and the optimal rule is to stop at the

first n for which

(M (1)
n − 1)2 + · · · + (M (k)

n − 1)2 ≤ 2c.

13



Thus, we stop when the Euclidean distance from (M (1)
n , . . . ,M

(k)
n ) to (1, . . . , 1) is at most

√
2c. If the X(j) have marginal exponential distributions with mean 1, the optimal rule is

to stop at the first n for which

exp{−M (1)
n } + · · · + exp{−M (k)

n } ≤ c.

§5. Discounted problems. The extension of this multiple selling problem to the

case without a cost but with a discount, 0 < β < 1, can be similarly treated, but we

cannot carry the solution as far. For simplicity we treat the model without recall only

in the case k = 2 of two objects. A model with recall is treated in Section 5.3. Let

(X1, Y1), (X2 , Y2), . . ., be a sequence of i.i.d. 2-dimensional random vectors with finite first

moments. Finite second moments are not needed in the discounted problems we treat.

The simplest extension is to allow discounting on each object until it is sold. This

leads to an optimality equation of the form,

Vxy = βEmax{X + Y,X + Vy, Vx + Y, Vxy},

where Vy and Vx are the optimal returns for selling the y and x objects optimally with

discount β, and satisfy the equations determined by Karlin (1962),

Vx = βEmax{X,Vx} and Vy = βEmax{Y, Vy}.

For this formulation, it is optimal to sell the objects optimally separately, and Vxy =

Vx + Vy. The possible dependence of X and Y plays no role in this result.

To obtain a nontrivial result analogous to the cost case, two modifications of this

model are presented. The more direct extension to an additive model to selling many

objects does not seem to be as flexible as was possible for the cost model. Therefore a

multiplicative model is also introduced.

§5.1 Additive model. We assume that if one object is sold, the discount on its

value continues until the other is sold. In other words, money from the first sale cannot

be deposited in the bank until the second object is sold as well. Thus, if one object is sold
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at a value X = x (respectively Y = y), continuing optimally to sell the other object gives

a return Vy(x) (respectively Vx(y)) satisfying

Vy(x) = βEmax{Y + x, Vy(x)} and Vx(y) = βEmax{X + y, Vx(y)}.

It is useful to rearrange terms and rewrite this in the form

(14)
(1 − β)

β
Vy(x) = E(Y + x − Vy(x))+ and

(1 − β)
β

Vx(y) = E(X + y − Vx(y))+ ,

corresponding to (1). The optimality equation for the problem of selling the objects to-

gether then becomes

(15) Vxy = βEmax{X + Y, Vy(X), Vx(Y ), Vxy},

corresponding to (2). In the modeling of this problem as a buying problem, we must

travel from store to store until both objects are bought. Then we return home and the

discounting stops.

It seems difficult to give general reductions on the form of the optimal rule for this

problem. Instead, we solve it in the special case of independent uniform distributions on

the interval (0,1). In this case, Vx(z) = Vy(z) for all z so we may drop the subscript. Since

clearly V (x) − x < 1, equation (14) reduces to

(1 − β)
β

V (z) = E(X + z − V (z))+

=
∫ 1

(V (z)−z)+
(x + z − V (z))dx

=
{

(1 − V (z) + z)2/2 if V (z) ≥ z
1
2 − V (z) + z if V (z) < z

and leads for V (z) ≥ z to the equation

V (z)2 − 2V (z)(z +
1
β

) + (1 + z)2 = 0,

with solution,

V (z) =

{
z + 1

β
− 1

β

√
1 − β2 + 2zβ(1 − β) if z ≤ β/(2(1 − β))

β(1
2

+ z) if z > β/(2(1 − β).
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For β ≥ 2/3, we have β/(2(1 − β)) > 1 so the lower half of this expression is not in force.

From this, (15) reduces to

Vxy = βEmax{X + Y,X +
1
β
− 1

β

√
1 − β2 + 2Xβ(1 − β),

Y +
1
β
− 1

β

√
1 − β2 + 2Y β(1 − β), Vxy}.

One may find Vxy, by numerical integration coupled with some root finding procedure. To

give an indication of the size of the optimal expected payoff, this equation was solved or

several values of β. If Vxy(β) denotes this value, we find Vxy(.8) = .9181, Vxy(.9) = 1.1643,

and Vxy(.95) = 1.3673.

§5.2 Multiplicative Model. As another extension to a discounted version of this

problem we consider maximizing the product rather than the sum of the values. For this

version we assume the offers for the objects are nonnegative, X ≥ 0 and Y ≥ 0, and that

the payoff is the product of X and Y . This could be considered as an assignment problem

where X represents the value of the job and Y the ability of the worker, similar to a model

treated by Derman, Lieberman and Ross (1972), except that in our model both workers

and jobs arrive. A model for matching pairs of arrivals may be found in the paper of David

and Yechiali (1986).

The optimality equation for discount β becomes

Vxy = βEmax{XY, Vy(X), Vx(Y ), Vxy}

where Vx(y) and Vy(x) are the optimal return functions for the maximizing Xy and Y x

respectively. These functions satisfy the equations

Vx(y) = βEmax{Xy, Vx(y)} and Vy(x) = βEmax{Y x, Vy(x)}.

From this, we can see that Vy(x) = xVy , where Vy is the unique number satisfying Vy =

βEmax{Y, Vy} and similarly Vx(y) = yVx, where Vx is the unique number satisfying Vx =

βEmax{X,Vx}. The optimality equation reduces to

(16) Vxy = βEmax{XY,XVy , Y Vx, Vxy}.

It is not difficult to show using the method of proof of Theorem 1 that there is a unique

solution to this equation for Vxy and that the principle of optimality leads to an optimal

rule. When X and Y are independent, the description of this rule may be simplified using

the following analog of Lemma 1.
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Lemma 4. If X and Y are independent, the value function is logarithmically superaddi-

tive. In fact, VxVy ≤ βVxy.

Proof. Let σ and τ be optimal rules satisfying Vx = EβσXσ and Vy +EβτYτ , where σ de-

pends on X1,X2, . . . only and τ depends on Y1, Y2, . . . only. Then σ and τ are independent,

and
VxVy + Eβσ+τXσYτ

≤ βEβmax(σ,τ)XσYτ

≤ βVxy.

We do not know if the logarithmic convexity analogue of Lemma 2 holds for this model

of selling more than two assets.

Logarithmic superadditivity implies that the optimal selling regions have a form sim-

ilar to that of Figure 1 but with the line x + y = Vxy replaced by the curve xy = Vxy.

As an example, consider the case of X and Y independent uniform random variables

on the interval (0, 1). Then,

V1 = Vx = Vy =
1
β
−

√
1
β2

− 1.

The expectations of max{XY,XV1, Y V1, Vxy} over the four regions corresponding to those

of Figure 1 becomes

A1 : (V 2
1 − V 2

xy)/2

A2 : (V 2
1 − V 2

xy)/2

A3 : V 2
xy(1 + ln(Vxy/V1))

A4 : (1 − 2V 2
1 + V 2

xy)/4 − (V 2
xy/2) ln(Vxy/V 2

1 )

From this, the optimality equation (16) becomes

Vxy = β[
1
4
(1 + 2V 2

1 + V 2
xy) +

V 2
xy

2
ln(Vxy/V 2

1 )].

This root of this equation is easily found by iteration. If V1(β) and Vxy(β) denote the

values, then V1(.8) = .5, Vxy(.8) = .3359, V1(.9) = .6268, Vxy(.9) = .4686, V1(.95) = .7239,

and Vxy(.95) = .5866.
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§5.3 With Recall. In the discounted case, the problem of selling the objects with

recall has a solution quite similar to that of Section 4 for the cost case. In the notation of

that section, the payoff for stopping at stage n is βn
∑n

i=1 M
(i)
n . The one-stage look-ahead

rule has a form similar to that of Theorem 6, namely,

N1 = min{n ≥ 1 :
k∑

j=1

φj(M (j)
n ) ≤ 1 − β

β

k∑
j=1

M (j)
n },

where as before φj(x) = E(X(j) − x)+. Since the φj(x) are nonincreasing in x and the

M
(j)
n are almost surely nondecreasing in n for each j, the problem is monotone and so N1

is optimal (under the assumption of finite second moments). Again, we see the optimal

rule depends on the joint distribution of offers only through the marginal distributions.

The details follow as in Section 4.
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