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Abstract. This problem is in the area of minimax selection of experiments. Nature

chooses a number θ in the closed interval [−1, 1]. The statistician chooses a number y

in the same interval (an experiment) and is informed whether θ < y, θ = y, or θ > y.

Based on this information, the statistician then estimates θ with squared error loss. The

minimax solution of this problem is found. The minimax value is 1/(2e). The least

favorable distribution involves the truncated t-distribution with two degrees of freedom.

The minimax choice of experiment involves the truncated t-distribution with zero degrees

of freedom.
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1. Introduction.

Paul Hoel has done important work on many problems. There is for example his early work

on approximation, factor analysis, and indices of dispersion. Or the more mathematical

work on unbiased estimation, similar regions, optimum Bayesian classification, confidence

bounds for polynomial regression, and the sequential F-test. But it is probably his mature

work on optimal design in regression problems that has had the most impact in the statis-

tical world. This work appeared in a series of 6 or 7 papers in the Annals of Mathematical

Statistics starting in 1958. In this work he solves some important and difficult problems

in minimax design. In this paper I am going to emphasize how difficult these problems are

by looking at one of the simplest nontrivial problems in minimax selection of experiment.

This little result is not in any way comparable to the really fine work Hoel has done on

experimental design and is only offered as a tidbit that may be amusing.

The problem treated is the estimation of a parameter based on information about

whether the parameter is greater or less than selected points (design points). When the

minimax criterion is used, these problems are called search games with directional informa-

tion. The discrete version, generalizing “twenty questions”, has been studied by Gilbert

(1962), Johnson (1964) and Gal (1974). A generalization to sequential selection of an

infinite sequence of design points in the unit interval, with loss equal to the sum of the

distances to the true point, has been studied by Baston and Bostock (1985) and Alpern

(1985). Problems using a Bayes criterion with respect to a uniform prior have been consid-

ered in Cameron and Narayanamurthy (1964), Murakami (1971,1976) and Hinderer (1990).

If lying is allowed, this has been called Ulam’s game and treated in Spencer (1984,1992)

and Czyzowicz et al. (1989). Berry and Mensch (1986) consider a related Bayes prob-

lem allowing false directional information to be given with known probabilities. A search

game with a continuous parameter and with possibly false directional information has been

treated in an interesting paper of Gal (1978).

Here we treat a continuous parameter version of a search game with directional in-
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formation, but restrict the searcher to one question, after which he must estimate the

parameter with squared error loss.

2. Statement of the problem.

The rules of the game are as follows. There are two players. Player I, the hider, chooses a

number θ in the interval [−1, 1]. Player II, the searcher, not knowing θ, chooses a number

y in the interval [−1, 1]. Then player II is informed whether θ < y, θ = y, or θ > y and

estimates θ by a number z in the interval [−1, 1]. The payoff is (θ − z)2 given by player II

to player I. When player II is told that θ = y, it is clearly optimal for him to choose z = y.

With this understanding, a pure strategy for II is a triplet, (y, z0, z1) where z0 denotes his

estimate of θ when he is told θ < y and z1 is his estimate of θ when he is told θ > y. We

may assume that z0 is in the interval [−1, y] and z1 is in the interval [y, 1]. Player II’s loss

is then

L(θ, (y, z0 , z1)) = (θ − z0)2I(θ < y) + (θ − z1)2I(θ > y), (1)

where I(A) represents the indicator function of the set A.

A mixed strategy for player I is a probability distribution, F (θ), on the interval [−1, 1].

A mixed strategy for player II is a probability distribution on the three quantities (y, z0, z1),

but since the loss to player II is a convex function of z0 and z1, he may restrict attention

to strategies that are nonrandomized in the choice of z0 and z1. With this restriction, II’s

mixed strategies consist of a distribution G(y) on the interval [−1, 1], and two functions,

z0(y) and z1(y), with the understanding that if y is the value chosen from G and II is told

that θ < y (resp. θ > y), he will estimate y to be z0(y) (resp. z1(y)).

3. Solution.

The minimax value of the game is v = (2e)−1 = .184 . . .. The unique optimal strategy for

I is to choose θ in [−1, 1] according to the distribution F (θ) that has

mass
1

(e + 1)
= .269 . . . at θ = −1
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mass
1

(e + 1)
= .269 . . . at θ = 1, and (2)

density f(θ) =
1

2e(e−1 + θ2)3/2
for |θ| < .5(1 − e−1) = .316 . . .

The unique optimal strategy for II is to choose y in [−1, 1] according to the distribution

G(y) that has

mass .25 at y = .5(1 − e−1)

mass .25 at y = −.5(1 − e−1) and

density g(y) =
1

2(e−1 + y2)1/2
for |y| < .5(1 − e−1). (3)

If θ < y, choose z = z0(y) = y −
√

e−1 + y2.

If θ > y, choose z = z1(y) = y +
√

e−1 + y2.

If θ = y, choose z = y.

-1 -.316 .316 1

.584

.824

.269 .269

0 -1 -.316 .316 1

.731

.824

.25 .25

0

f(θ) g(y)

-.316 0 .316

1.0

.368

.606

z1(y)
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4. Proof.

It is convenient to introduce a generalization of the distribution (2). The scaled version of

the t-distribution with 2 degrees of freedom has density

f(θ|σ) =
1
2σ

(1 +
θ2

σ2
)−3/2.

(The t2-distribution has σ =
√

2.) For 0 < σ < 1, let F (θ|σ) denote the distribution of a

random variable, Θ, that has

density f(θ|σ) for |θ| < γ and

mass p(σ) =
∫ ∞

γ

f(θ|σ)dθ at θ = ±1
(4)

where

γ =
1 − σ2

2
.

The distribution (2) has σ = e−1/2. We use the following indefinite integral formulas.
∫

f(θ|σ)dθ =
θ

2σ
(1 +

θ2

σ2
)−1/2 (5)

and ∫
θ f(θ|σ)dθ = −σ

2
(1 +

θ2

σ2
)−1/2

and ∫
θ2f(θ|σ)dθ =

σ2

2
[log(

θ

σ
+ (1 +

θ2

σ2
)1/2)− θ

σ
(1 +

θ2

σ2
)−1/2].

The mass p(σ) may be found from (5) as

p(σ) =
1
2
[1− γ

σ
(1 +

γ2

σ2
)−1/2] =

1
2
[1 − 1

2
1 − σ2

1 + σ2
].

Against the strategy where I chooses Θ according to the distribution (4), player II chooses

y ∈ [−γ, γ] and estimates θ to be E(Θ|Θ < y) if he learns Θ < y, and E(Θ|Θ > y) if he

learns Θ > y. The expected payoff is

V (y) = P(Θ < y)Var(Θ|Θ < y) + P(Θ > y)Var(Θ|Θ > y)

= E(Θ2) − P(Θ < y)E(Θ|Θ < y)2 − P(Θ > y)E(Θ|Θ > y)2

= E(Θ2) − (E(ΘI(Θ > y)))2

P(Θ > y)P(Θ < y)
.

(6)
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Here we have used the formula E(ΘI(Θ > y)) = −E(ΘI(Θ < y)), which follows from the

symmetry of the distribution of Θ. For |y| < γ,

E(ΘI(Θ > y)) =
∫ γ

y

θ f(θ|σ)dθ + p(σ)

=
1
2
[1 − (σ +

γ

σ
)(1 +

γ2

σ2
)−1/2 + σ(1 +

y2

σ2
)−1/2]

=
σ

2
(1 +

y2

σ2
)−1/2.

The first term of (6) is independent of y.

E(Θ2) = 2[
∫ γ

0

θ2f(θ|σ)dθ + p(σ)]

= 1 + σ2 log(
γ

σ
+ (1 +

γ2

σ2
)1/2) − (σ2 + 1)

γ

σ
(1 +

γ2

σ2
)−1/2

= σ2(1 − log(σ)).

Hence,

V (y) = σ2(1 − log(σ)) − σ2 = −σ2 log(σ)

is also independent of y. This is maximized (by player I) at σ = e−1/2, giving a value

V (e−1/2) = 1/(2e).

Now, we show that the strategy (3) for player II guarantees a value of at most 1/2e.

Again we generalize the strategy (3) for purposes of analysis. For e−1 < σ < 1, let Y be

chosen from the distribution G(y|σ) that has

density g(y|σ) =
1
2
(σ2 + y2)−1/2 for |y| < γ and

mass q(σ) =
1
2
−

∫ γ

0

g(y|σ)dy at y = ±γ

choose z = z0(y) = y −
√

σ2 + y2 if θ < y

choose z = z1(y) = y +
√

σ2 + y2 if θ > y

choose z = y if θ = y

(7)

where, again, γ = (1 − σ2)/2. For σ = e−1/2, this reduces to (3). Here are some useful
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indefinite integral formulas
∫

g(y|σ)dy =
1
2

log(y +
√

σ2 + y2)
∫

z1(y)g(y|σ)dy =
1
2
(y +

√
σ2 + y2)

∫
z0(y)g(y|σ)dy = −1

2
(y −

√
σ2 + y2)

∫
z1(y)2g(y|σ)dy =

y

2
(y +

√
σ2 + y2)

∫
z0(y)2g(y|σ)dy = −y

2
(y −

√
σ2 + y2).

The expected payoff to I using θ against (7) is

W (θ) = E(θ − z1(Y ))2I(Y < θ) + E(θ − z0(Y ))2I(Y > θ)

= θ2 − 2θ[Ez1(Y )I(Y < θ) + Ez0(Y )I(Y > θ)]

+ Ez1(Y )2I(Y < θ) + Ez0(Y )2I(Y > θ).

We consider two cases.

Case 1. |θ| < γ. Then

Ez1(Y )I(Y < θ) =
∫ θ

−γ

z1(y)g(y|σ)dy + q(σ)z1(−γ)

=
1
2
[(θ +

√
σ2 + θ2)− (−γ +

√
σ2 + γ2)] + q(σ)z1(−γ).

Similarly,

Ez0(Y )I(Y > θ) =
1
2
[(θ −

√
σ2 + θ2)− (γ −

√
σ2 + γ2)] + q(σ)z0(γ),

so that using z1(−γ) = −z0(γ), one obtains

Ez1(Y )I(Y < θ) + Ez0(Y )I(Y > θ) = θ.

Also,

Ez1(Y )2I(Y < θ) =
∫ θ

−γ

z1(y)2g(y|σ)dy + q(σ)z1(−γ)2

=
θ

2
(θ +

√
σ2 + θ2) +

γ

2
(−γ +

√
σ2 + γ2) + q(σ)z1(−γ)2
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and similarly,

Ez0(Y )2I(Y > θ) =
θ

2
(θ +

√
σ2 + θ2) +

γ

2
(−γ +

√
σ2 + γ2)] + q(σ)z0(−γ)2.

Now, using −γ +
√

σ2 + γ2 = σ2 and z0(γ)2 = z1(−γ)2 = σ4, we have

Ez1(Y )2I(Y < θ) + Ez0(Y )2I(Y > θ) = θ2 + γσ2 + 2σ4q(σ).

Combining these, we have

W (θ) = θ2 − 2θ2 + θ2 + γσ2 + 2σ4q(σ) = γσ2 + 2σ4q(σ)

independent of θ.

Case 2. γ < |θ| < 1. Assume without loss of generality that γ < θ < 1. Then Y < θ

with probability one, and

W (θ) = θ2 − 2θEz1(Y ) + Ez1(Y )2.

But
Ez1(Y ) = q(σ)z1(−γ) +

∫ γ

−γ

z1(y)g(y|σ)dy + q(σ)z1(γ)

= q(σ)(1 + σ2) + (1− σ2)/2

and

Ez1(Y )2 = q(σ)[z1(−γ)2 + z1(γ)2] +
∫ γ

−γ

z1(y)2g(y|σ)dy

= q(σ)(σ4 + 1) + (1 − σ4)/4.

At σ = e−1/2, we have Ez1(Y ) = (3− e−1)/4 and Ez1(Y )2 = 1/2, so

W (θ) = θ2 − 2θ(3 − e−1)/4 + 1/2.

This is a quadratic in θ with minimum at the point (3− e−1)/4, which is the midpoint of

the interval (γ, 1). Hence, on this interval, W (θ) on this interval is less than the value at

its endpoints, that is,

W (θ) ≤ W (1) = 1− 2(3 − e−1)/4 + 1/2 = e−1/2 for γ < θ ≤ 1.
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The third case is θ = γ, but this allows II to estimate θ exactly when y = γ, which happens

with probabilty 1/4, so W (γ) < limθ→γ W (θ) = e−1/2. Combining this with the above,

we have
W (θ) = e−1/2 for |θ| < γ and θ = ±1

W (θ) < e−1/2 for γ ≤ |θ| < 1.

5. Remark.

Jim MacQueen points out that this result has an interesting implication in the area of

minimum variance partitions. We are given the distribution of a random variable, X,

and we desire to choose a partition of the sample space into k subsets for fixed k, say

disjoint sets A1, . . . , Ak whose union is the whole space, such that the conditional variances

averaged over the partitions is as small as possible; that is we desire to have
∑

P(X ∈

Ai)Var(X|X ∈ Ai) as small as possible. Such a minimum variance partition may be

considered as an efficient mapping of the observation into a k-valued random variable.

When k = 2 and when the distribution of X is F (x), where F (θ) is the optimal strategy of

the hider given above, then it doesn’t matter how you partition the interval [−1,+1] into

two intervals. All such partitions are minimum variance partitions.
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