ON THE ASYMPTOTIC DISTRIBUTION OF MAX AND MEX

Thomas S. Ferguson

A form of the asymptotic joint distribution of the maximum and of the minimal exclu-
dent of a sample of size n from a discrete distribution with exponential tails is derived.
A strong law is given followed by an application to an inconsistent Bayes procedure.
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1. INTRODUCTION AND SUMMARY

The objective of this paper is to develop a form for the asymptotic joint distribution
of the maximum (max) and the minimal excludent (mex) of a sample of size n from a
discrete distribution on the non-negative integers with exponential tails.

Throughout this paper, p; for j = 0,1,2,... denotes the frequency function of a
random variable X defined on the non-negative integers, and Xy, X, ..., X,, represents

a sample from this distribution. Also, M, denotes the maximum,
M, = max(Xy,..., X,)

and L,, denotes the minimal excludent,

L, =mex(Xy,...,X»)
=min{k >0:X;#k for 1=1,...,n},
the smallest non-negative integer not hit by one of the X;. The term mex is due to J.
H. Conway (1976).

It seems as if the particular form given below for the asymptotic distribution of

the max has not been worked out before. This is surprising in view of the relatively



complete theory available for the continuous case. An excellent survey of this area
may be found in J. Galambos (1978). The lack of attention given to the discrete case
is due partly to the fact that the distribution of the maximum of a sample of size n
from a distribution on the non-negative integers cannot, in general, be normalized so
as to converge to a non-degenerate distribution. This was pointed out in Galambos
(1978) page 120, Exercise 8, where “in general” means that the distribution is such
that P(X > k 4+ 1)/P(X > k) does not converge to one as k — oco. When the limit

exists and is strictly between zero and one,

_ o PX k41
TR T P(X > k)

0<a<l, (1.1)

C. W. Anderson (1970) has derived upper and lower bounds on the distribution of a
centered version of the max. A corresponding treatment of the Poisson distribution,
in which case a = 0, may be found in A. C. Kimber (1983). A form of the asymptotic
distribution of max has been described in a special case by Heyde (1971), and in the
general case by Iglehart (1977) and by Diaconis and Freedman (personal communica-
tion).

We shall see that when (1.1) holds, precise statements can be made regarding
the approximate form of the distribution function of a centered maximum valid for all
sufficiently large n. This is done in Theorem 1 where it is shown that by taking the
limit as n — oo over an appropriate subsequence of the integers, the joint distribution
of a centered max and mex converges to a member of a family of distributions (2.5),
indexed by a parameter, . For each large n, one may find the appropriate € to use to
obtain an approximate distribution.

In passing, an interesting semi-independence property is observed for the limiting
distribution which implies a strong relation between the limiting marginal distributions
of max and mex.

In section 3, it is shown that L,/log(n) and M, /log(n) converge almost surely,
and an application is given to an example due essentially to D. Freedman (1963) of an
inconsistent Bayes procedure.

Section 4 contains some examples illustrating the problems involved in choosing
the centering constant and 6 for a given n. Some tables clarifying the shape of the
distribution and suggesting different choices of 8 for the marginal distributions are also

given.



2. THE MAIN THEOREM
We say that a frequency function, p;, defined on the non-negative integers has

exponential tails at decay rate a, 0 < a < 1, if

Z;?H Pi e a

- as k — oo. (2.1)
Zk D
Lemma 1. A frequency function, p; for 1 = 0,1,2,..., has exponential tails at decay
rate a, 0 < a < 1, if and only if
Pe+1 _, as k — oo. (2.2)
Dk

Proof. (only if)

o0 . o0 . 2
Pk4+1 . Zk-}-l Pi — Zk-‘r2 D - a—a

Dk Ei"pi—ziilpi l1—a

(if) Given 0 < € < a, find an integer K such that for all k& > K,

= dad.

G—GSM<G+6.
Pk
Then, for all £ > K and 7 > 0,
(a—e)igpk—H §(a+e)l
Pk

Take the sum on ¢ > 0, then the limit as & — oo, and conclude from the arbitrariness

of € > 0, that

1 1
— Zpi — as k — oo. (2.3)
Dk l—a
k
Hence, the conclusion follows from
2211 bi Dk

9 =1- 9
>k Di dop P

The equivalence of (2.1) and (2.2) is also valid for @ = 0, and although (2.2) implies

—1—(1-a)=a.

(2.1) for a = 1, the converse is not true for a = 1.

Theorem 1. Let X1, Xo,... be v.i.d. with frequency function, p; > 0 for1=0,1,2,...
having exponential tails at decay rate a, 0 < a < 1, and let M, = max(Xy,...,X,)
and L, = mex(Xy,...,X,). Let {ni} be a sequence of integers such that

ngpr — 0 as k— oo (2.4)



for some 6 with 0 < 6 < co. Then, as k — oo,

P(L,, —k=1,M,, —k=m)— f(l,m|a,0) for Ibm=0,+1,42,...

where
-1 o e_eal(l — e_eam)e_9“m+1/(1_“) for m >1
fl,mla,8) = J[ (1—e7*)-q c=0al/1-a) form=1—1 (2:3)
1=—00 0 otherwise.

In particular, the limiting marginal distribution of M, s
P(My, —k=m) — (1 — e )= =) o 0 — 0,41, 42, ... (2.6)

and the limiting marginal distribution of L, 1s

-1
P(L,, —k=1)— [ I] - e—"“i)] e for 1=0,41,£2,.... (2.7)
i=—o00

Remark 1. The assumption that all p; be positive is obviously unneeded for the asymp-
totic distribution of the max. It is just as clearly needed to obtain the asymptotic
distribution of the mex in the form given in the theorem. However, since the assump-
tion of exponential tails implies that p; > 0 for all ¢ sufficiently large, the result of
Theorem 1 would hold more generally if we defined L,, to be the minimal excludent of
(X1,...,X,) among ¢ such that p; > 0.
Remark 2. The asymptotic distribution of the max, (2.6), is the discretized version
of the limiting distribution of the max for continuous variables in the “general case”,

¢~ up to change of location and scale.

namely, F(z) = e~
Remark 3. Note that for [ > m, the joint probability (2.5) is a product of the marginal
probabilities (2.6) and (2.7). This means that the asymptotic joint distribution can
be obtained by choosing [ and m independently according to the asymptotic marginal
distributions, (2.6) and (2.7), and then changing m to [ — 1 if m < [. Strangely, this
alteration does not change the marginal distribution of m. We can also obtain the
same result by changing, instead, [ to m + 1 if [ > m. This remark implies that there
is a strong relation between the marginal distributions of the limiting variables. This
is expressed in the following lemma.

Lemma 2. Let L and M be integer valued random variables, and let f; = P(L = 1)
and gm = P(M =m), and suppose that the joint distribution of L and M satisfies

{flgm forl <m

P(L=I,M=m)=< ( form=1-1

0 otherwise



for some numbers C; for | =0,£1,£2,..., then
P(L=IlL>1-1)=PM=1-1M <) (2.8)

for alll for which both sides exist.

Proof.
Cr="1fi=Y figm=11)_ om
m>1 m<l
=4gi-1 — Z fmgl—l =4gi-1 Z fm
m<l—1 m>1l—1

The asymptotic distributions of the max and mex therefore satisfy (2.8). These
equations exhibit a very strong relationship between the distributions of L and M,
but it is not clear exactly how strong. For example, it is conjectured that for a given
distribution of L such that P(L > 1) > 0 for all [, there is at most one distribution of
M satisfying (2.8). (There may be none.)

Remark 4. These limiting distributions have a logarithmic-periodic property in 6,

namely,
fl,mla,af) = f(I +1,m+ 1]a, 6). (2.9)

This is reflected in the fact that from (2.4), ng—1pr = ng—1pk—1(Pr/pr—1) — Ba. If we
restrict, say, a < # < 1 in these formulas, the remaining distributions may be obtained
from one of these by an integer change of location, the same change for both variables.
Proof of Theorem 1. The proof of Theorem 1 is broken into two parts. First
it is shown that the result holds if the sample size is chosen according to a Poisson
distribution with parameter n, rather than a fixed sample size n. Then, it is shown
that these two sampling schemes are asymptotically equivalent.

Part 1. Let Xy, Xs,... be ii.d. according to p; > 0 for ¢+ = 0,1,2,..., and let N be
Poisson with parameter n independent of X, X5,.... For 7 =0,1,2,..., let N; denote

the number of X; among X, X5,..., Xy such that X; = j. It is well known that the

*9

random variables Ny, Ny, ... are independent (see, for example, Lemma 2 of Ferguson
and Klass (1972), and furthermore that N; has a Poisson distribution with parameter
np; for 1 =0,1,2,....

Let My = max(Xy,...,Xn) and Ly = mex(Xy,...,Xn) where we define My
and Lg to be —1 and 0 for definiteness. Then, for [ < m,

Po(Ly =1, My =m)
= Py(No>0,...,Ni_1 > 0,N;=0,Np, >0, Nppys =0,...)

-1 .

H(l — e_"p")] e (1 — e P ) " Luma P

=0




We now let n = ny — oo in such a way that ngpr — 0 and use assumption (2.1) which
entails (2.2) and (2.3), to conclude

P (Ly —k=1,My —k =m)

-1
= [ H (1 _ e—nkpk-}-i)] e—nkpk-}-l(l _ e_npk+m)e_n Zm-}-l Ph4i

1=—k

-1

N [ H (1 _ e—Oai)] e—Oal(l . e—Oam)e—Oam+1/(1—a)
1=—k

as k — oo, term by term. To show that the infinite product converges, it is sufficient

to show that for every € > 0 there exists an integer K such that for all sufficiently large
k

—K

[T —emrey>a—e (2.10)

i=—k
First find Ky such that & > Kq implies ngpr > 0y where 65 is some number 0 < 85 < 6.

Find also Ky such that & > K4 implies pry1/pr > ag where ag is some number ag > a.

Let K > Ko and k > K + K. Then,

-K k

H (1 _ e_nkpk-}-i) >1— Z e~k Pk—i

1=—k 1=K
k

>1— Z e—9opk—i/Pk

1=K
k=K, _
>1-— Z e~ foag’ _ Kle_eo‘s/pk

1=K
where 6 = min(po, p1,...,pr,—1) > 0. Now (2.10) follows since the first sum with the
upper limit replaced by +o0o can be made greater than —e/2 by making K sufficiently
large, and then the second term can be made greater than —e/2 by making k sufficiently
large. Thus, the limiting distribution of (Ly, M) is as given in (2.5). for | < m. For
[ = m + 1, the result follows similarly.
Part 2. To show the two sampling schemes are equivalent, we put all random variables

on the same probability space and show that
P.,(L,=Ln,M, =Myn)—1 as n — oo.

Let Ty, T,,... be i.i.d. Poisson random variables with parameter 1, independent of

the sequence Xy, Xs,.... Let S, = > ] T; and let L] = mex(Xy,...,Xg,) and M} =



max(Xy,...,Xs,). Then the distribution of (Lyx,My) of part 1 is identical to the
distribution of (L], M) ). Moreover,

P(L, =L, My =M})=>_ P(S, =k)P(Ly = Ly, M,, = My)

k=0

(V4
(]
3
=

I
=
3
S
B
E

|k—n|<ay/n

where « is an arbitrary positive number, and A(a, n) represents the event that no new
observations occur among the X; with i in the interval from n — ay/n to n+ay/n. The

probability that a new observation occurs at time n + 1 is
e e} e e}
Y opi(l—p))" <Y pje "

Sl‘ pjfz pj

IA
| —
+
(]
3

where k = k(n) is the largest integer such that exp{—np;} < 1/n for all j < k (i.e.
pj > log(n)/n for all j < k and pry1 < log(n)/n). Since assumption (2.3) implies
2211 pj < ¢pr+1 for some constant ¢ > 0 and all k sufficiently large, we can further

bound this probability for n sufficiently large by

Y pi(l—pj)" < —+eprsr = —(1 4 clog(n)).
j=0

n
Hence, the probability that a new observation occurs at X; for some : in the interval,
n — ay/n to n + ay/n, is bounded by

%(1 + clog(n — oz\/r_z)).

By choosing a so that P(|S, —n| < ay/n) > 1 — (¢/2) for all n sufficiently large, and

then choosing n sufficiently large so that P(A(a,n)) > 1 — (€/2), we obtain

P(L, = L), M, = M,) > (1 - %)(1— %) > 1



3. A STRONG LAW AND AN APPLICATION

For the application to an inconsistent Bayes estimate, the following strong law is
needed. More sensitive strong laws for the max in the geometric case have been found
by Diaconis and Freedman (personal communication).

Theorem 2. Under the assumptions of Theorem 1,

Ly
log(1 1 8.
Tog(n] og(l/a) — a.s

M
" _Jog(1 1 8.
Tog(n] og(l/a) — a.s

Proof. Since L, < M, + 1, it is sufficient to show

and

P(Ln < (1 —€)log(n)/log(1/a)
P(M, < (1 + €)log(n)/log(1/a)

)
)

for all € > 0. First note that for every ag < a, there exists a constant ¢ > 0 such that

1.0.
1.0.

0
0

pj > caé for all 5. Hence,

P(L, < K)= P(at least one j < K isnot hit by Xi,...,X,)

K K

ST
j=o j=0
K K o

< Ze—ncaé _ Ze—ncao _J.
j=0 j=0

Next note that ao_j > 1+ bj where b = (1 —ag)/ao, so that

P(L, < K) < ™m0 /(1 — e nebe5),

For K = K, = (1 —€)log(n)/log(1/ag), the sum > P(L, < K,) converges, so that
P(L, < K,, io0.)=0 by Borel-Cantelli. The arbitrariness of ag < a and € > 0 implies
the same result for a = ag as well.

To show the result for M, note that for any non-decreasing sequence K,,, P(M,, >
K, io.)=P(X, > K, 1io.). Let a; > a and find a constant ¢ such that p; < caé
for all . Then

P(X,>K,) =Y pj<ca/(1-a).
=R

For K, = (1 + €)log(n)/log(1/ai), we have ) P(X, > K,) < oo so that P(X, >

K, i.0.)=0 and the theorem follows.



As an application, we consider an example of an inconsistent Bayes procedure in
which the mex of the sample plays a role. This example is a modification of an exam-
ple of Freedman (1963) in which the phenomenon was first observed. According to a
theorem of Doob (1948), Bayes procedures are consistent at all points of the param-
eter space except for a set of points of probability zero under the prior distribution.
Therefore, no really strong example like those for inconsistency for maximum likelihood
estimates (see for example, Ferguson (1982) can be found. In the example below, there
are countably many distributions, indexed by # = 0,1,2, ..., with a single limit point,
f = oo, which is in the support of the prior; yet if # = oo is the true value, the posterior
distribution given the sample converges to § = 0. For other examples of inconsistency
of Bayes procedures, see Diaconis and Freedman (1986).

Let the parameter space be © = {0,1,2,...,00}. For 8 = oo, let the distribution

of X be geometric with parameter .5,
Poolz) = (.B)"H! for r=0,1,2,....

For 6 = 1,2,..., let the distribution of X be the same with the modification that the

mass at 8 is removed and placed at 0,

b+ (.5)9+1 forx =0
po(z) =< 0 forz =26
(.5)* ! forx =1,2,... and  # 6.

For 6 = 0, any finite modification of p., giving positive weight to all = = 0,1,2,...
would work, but let us take for definiteness the modification in which the mass on 0

and 1 are interchanged,

(.5)2 for x =0
po(z) =< (.5) forz =1
(.5)* T for x =2,3,....

The prior distribution, ¢(#), will give positive weight to each of § = 0,1,2,..., and
though 8 = oo gets zero weight, it is in the support of the prior. Yet if § = oo is
the true value, the posterior distribution does not give more and more weight to those
distributions close to § = oo as n — oo as one would hope. Rather, the posterior
distribution gives more and more weight to § = 0.

Theorem 3. Let X1, Xs,... be a sample from pg(x), and suppose the prior probabil-
ities, q(0), are positive for 8 = 0,1,2,..., and q(cc) = 0. Then, if § = oo is the true
value, and if q(6) — 0 sufficiently fast as 6 — oo (how fast is noted in the proof), the



posterior probability of 6 = 0 given Xq,..., X, tends almost surely to one as n — oo,
i€

q(0]Xq,.... Xn) > 1 a.s..

Proof. The posterior probabilities are proportional to

n

a(0) [[ po(X) 6=0,1.2,....

1

Any observation X; > 1 does not change the relative weights except to put this weight

for § = X, to zero if it is not already zero. So these weights are proportional to

q(0)(.25)No(.5)M for =0
q(0)(.5 + 50+ No(25)N1 [(Ng = 0) for 6=1,2,...
where N; is the number of X; among Xy,..., X, that are equal to 7, and I represents

the indicator function. Let L, = mex(Xy,...,X,). Then, the sum of the weights on
1,2,3,... is bounded above by

D al0) (5 + 50N (25)M < (5)NoF N (14 5T N0 N (6
=1L, =1L,
Hence the posterior probability of 8 = 0 is at least
—1
gOIX1,. o, Xp) > |14 2V M (14 55N N 7 g(6)/9(0)
9>1Ln

From the strong law of large numbers, No/n — .5 a.s. and Ny/n — .25 a.s. From
Theorem 2, we see that L, /log,(n) — 1 a.s. so that ¢(0|X1,...,X,) = 1 a.s. provided

on/4 Z q(8) — 0 a.s..
9>

Obviously, this can be achieved by choosing the tail of the prior to go to zero sufficiently
rapidly; for example, >, q(0) = 24" works.

4. EXAMPLES AND TABLES
In the applications of the formula of Theorem 1, some care must be exercised in
choosing the values of k& and 8 given n, as these values are not uniquely determined.
First consider sampling from the geometric distribution, py = (1 — a)a* for k =

0,1,2,.... For a < 8 <1, the equation, np; = 6 is satisfied uniquely by

k= [(log(n) + log(1 — a))/ log(1/a)]

0 = npy.



For example, if n = 10° and @ = .5, then £ = 29 and # = .93--.. In the geometric

case, the non-unicity of the choice of k& and € is not important. In fact, if we choose

k=28 and 8 = 1.86-- -, we would get the same approximation from equation (2.5) as
for k =29 and § = .93 - - -.
However, if the distribution of X is negative binomial of the form p; = (1 —

a)2a*(k 4 1) for k = 0,1,2,..., then npy — 1 implies that

kE ~ [log(n) + loglog(n) + 2log(1 — a) — loglog(1/a)] /log(1/a),

in the sense that for large n the difference is small. For n = 10° and a = .5 again, we

find

for k=33, 6=.989---,
for k=34, 6=.509---.

Both values of 6 are in (a,1). Either pair (k,6) may be used in(2.5) but they give
slightly different approximations.

For the logarithmic series distribution,
pr = a" T/ ((k 4+ 1)1log(1/(1 — a))) for k=0,1,2,...,
we have the opposite behavior with

k ~ [log(n) —loglog(n) + log(1/a) —loglog(1/a)] /log(1/a).
For n = 6 x 10% and a = .5, we find np;, = 6 solved by

for k=24, 6=1.032---,

9

for k=25 6=0.496---.

For this choice of n, neither value of 8 is in (a,1). The choice of which pair should be
used depends on how the approximation is to be used. The general problem requires
further investigation.

Formulas (2.5), (2.6) and (2.7) for the asymptotic distribution of max and mex are
rather complex and do not lend much insight. To help gain understanding, some tables
of these distributions are presented. In Table 1, the asymptotic joint distribution of
max and mex is displayed for a = .5 and for two values of 8, § = 1 and § = \/.5. This
shows how the mass shifts toward larger values with decreasing 6. It also illustrates

one surprising aspect of this distribution that occurs only when a = .5, namely, the



sum of the subdiagonal elements in both tables is equal to .5. Specifically, let 1(6) =
P(L =M +1]6,a = .5). Then,

1(8)

Hence, 21(0) = > ;2

I=—c

I=—00

T a7

L1=— OO

1:[ (1 . 6—92_i)

L1=— OO

-1

[T -

Li=—oc0

P(L=1f,a=.5)=1,s0 I(f) =.5for all 6.

TABLE 1. The joint asymptotic distribution of max and mex

distribution with exponential tails with decay rate, a = .5.

f=1:
max

mex -3 -2 0 1 2 3
-3 .0000 .0000 .0001 .0001 .0001 .0000
-2 .0003 .0021 .0043 .0044 .0032 .0019
-1 .0180 .0309 .0317 .0229 .0138
0 1148 0745 .0538 .0324
1 1973 .0560 .0337
2 1280 .0170
3 .0364
4 .0048
5

.0003 .0180 .1170 .2325 .2387 .1723 .1037
0=+.5":
max

mex -3 -2 0 1 2 3
-3 .0002 .0006 .0009 .0007 .0005 .0003
-2 .0035 .0108 .0147 .0123 .0080 .0046
-1 .0554 0570 .0477 .0310 .0177
0 1725 0732 .0475 .0271
1 774 .0343 .0196
2 0752 .0070
3 .0145
4 .0013
5

0035 .0556 .1840 .2499

2091 .1358 .0774

4
.0000
.0010
.0076
0178
0185
.0094
.0023

.0003
.0569

4
.0001
.0024
.0094
.0145
.0104
.0037
.0007

.0001
.0414

5

.0000
.0005
.0040
.0093
0097
.0049
.0012
.0002

0298

5

.0001
.0013
.0049
0075
.0054
.0019
.0003
.0000

.0214

when

.0000
.0003
.0020
0048
.0050
0025
.0006
.0001
.0000
0153

6
.0000
.0006
0025
.0038
0027
.0010
.0002
.0000
.0000
.0109

sampling from a

7
.0000 .0003
.0001 .0183
.0010 .1328
0024 .3122
0025  .3253
0013 .1644
.0003 .0412
.0000 .0052
.0000 .0003
.0077 1.0000
7
.0000 .0035
.0003 .0589
0012 2279
0019 .3499
0014 .2526
0005 .0898
.0001 .0159
.0000 .0014
.0000 .0001
.0055 1.0000

This result implies that if the distribution has exponential tails with decay rate

a = .5, then P(L, = M, + 1) actually converges (to one-half) as n — co. Computer



results show that for a # .5, P(L = M + 116, a) does depend on 8, so in the other cases
we do not get convergence as n — oo.

An alternate proof that I(f) = .5 can be found using the following more general
result of Ferguson and Melolidakis (1984): Let Xy,..., X, be i.i.d. geometric with
parameter .5, and let K, be the number of empty cells less than the largest occupied
cell. Then K, has a geometric distribution with parameter .5 for all n. The event
K, = 0 is the same as the event L, = M, + 1. It would be of interest to find the
asymptotic distribution of K, for an arbitrary geometric distribution. However, the
resulting distribution should have a logarithmic-periodic form as in Theorem 1, since
P(L =M +1]6,a) depends on 6 when a # .5.

Table 2 exhibits the asymptotic distribution of max for various values of a. The
standard theory of the asymptotic distribution of max suggests using as a centering
constant a value k' = k'(n) satisfying n Zioik'-u p; — 0, where 8 is close to 1. Such a
value of k' should yield better approximations than the one using npr — 6 with 6 close
to 1, since the resulting distribution should have mean closer to zero. For small values
of a, this makes no difference, but for @ = .8 this results in a ¥’ = k + 6, and for a = .9,
k' = k + 21. From (2.3), such a change is asymptotically equivalent to using k& such
that npr — 6 where 6 is close to (1 — a)/a. These are the values of § used in Table 2.

TABLE 2. Asymptotic distribution of max.

6 =9.000 4.000 2.333 1.500 1.000 0.667 0.429 0.250 0.111
M a=.1 2 3 4 D .6 7 .8 9
-3 .0000 .0000 .0000 .0000 .0003 .0093 .0386 .0548 .0359
-2 .0000 .0000 .0000 .0019 .0180 .0524 .0757 .0678 .0373
-1 0000 .0067 .0357 .0802 .1170 .1267 .1097 .0769 .0382
3678 3611 3322 2858 .2325 1790 .1282 .0814 .0387
5370 4509 3729 .3024 2387 1809 .1287 .0814 .0387
0852 1421 1731 1818 .1723 .1489 .1160 .0780 .0383
0090 .0312 .0594 .0859 .1037 .1081 .0970 .0720 .0375
0009 .0064 .0186 .0367 .0569 .0727 .0769 .0646 .0365
0001 .0013 .0056 .0151 .0298 .0467 .0587 .0567 .0352
.0000 .0003 .0017 .0061 .0153 .0292 .0437 .0488 .0337
.0000 .0001 .0005 .0025 .0077 .0180 .0319 .0414 .0321

=1 O Ot ke W NN = O

The asymptotic distribution of mex for various values of a is found in Table 3.

Here the approximate choice of 6 for a given value of a to center the mode of the



distribution between zero and one is as the solution of e~ *? 4 ¢~ = 1. These are the
values of 8 chosen for Table 3. Unlike for Table 2, the values of § are increasing in a, so
the appropriate choice of the centralizing k is smaller than that given by npy — 6 with
f close to one. The choice of the same centralizing k£ for both max and mex, found in

Theorem 1, represents a convenient compromise.
TABLE 3. Asymptotic distribution of mex.

6 =0.730 0.773 0.824 0.886 0.962 1.061 1.198 1.406 1.802
L a=.1 2 3 4 D .6 7 .8 9
.0000 .0000 .0000 .0000 .0005 .0074 .0302 .0609 .0685

-3

-2 .0000 .0000 .0001 .0039 .0213 .0521 .0835 .0987 .0803
-1 0007 .0210 .0641 .1086 .1428 .1604 .1587 .1361 .0894
0 4816 .4519 4105 .3658 .3192 .2699 .2173 .1600 .0945
1 4813 4516 .4102 .3660 .3191 .2698 .2173 .1600 .0945
2 0362 .0732 .1068 .1351 .1550 .1639 .1587 .1353 .0892
3 0003 .0023 .0080 .0195 .0374 .0606 .0840 .0961 .0792
4 .0000 .0000 .0002 .0011 .0045 .0136 .0320 .0570 .0661
5) .0000 .0000 .0000 .0000 .0003 .0018 .0087 .0280 .0516
6 .0000 .0000 .0000 .0000 .0000 .0002 .0017 .0113 .0376
7 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0033 .0255

Acknowledgement. The author gratefully acknowledges the help of Michael J.
Klass on this problem.
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