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Abstract: In the house-hunting problem, i.i.d. random variables, X1,X2, . . . are observed se-

quentially at a cost of c > 0 per observation. The problem is to choose a stopping rule, N , to

maximize E(XN − Nc). If the X’s have a finite second moment, the optimal stopping rule is

N∗ = min{n ≥ 1 : Xn > V ∗}, where V ∗ satisfies E(X − V ∗)+ = c. The statement of the

problem and its solution requires only the first moment of the Xn to be finite. Is a finite second

moment really needed? In 1970, Herbert Robbins showed, assuming only a finite first moment,

that the rule N∗ is optimal within the class of stopping rules, N , such that E(XN −Nc)− > −∞,

but it is not clear that this restriction of the class of stopping rules is really required. In this paper

it is shown that this restriction is needed, but that if the expectation is replaced by a generalized

expectation, N∗ is optimal out of all stopping rules assuming only first moments.
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1. Introduction. The house-hunting problem, also called the problem of selling
an asset or the job search problem, was introduced and solved almost simultaneously in
papers by MacQueen and Miller (1960), Derman and Sacks (1960), Chow and Robbins
(1961) and Sakaguchi (1961). This problem may be described as follows. Independent,
identically distributed random variables, X1,X2, . . . with common distribution function,
F (x), are observed sequentially at a cost of c per observation, where c > 0. We always
assume that the expectation of the positive part of X is finite : EX+ < ∞, where X has
distribution F (x).

You must take at least one observation. If you stop after n ≥ 1 observations, you
receive Xn as a payoff, so your net return is Xn − nc. If you never stop, your payoff is
defined to be −∞ since Xn − nc → −∞ a.s. as n → ∞ when EX+ < ∞.

The problem is to choose a stopping rule, N , to maximize E(XN −Nc). It is customary
to assume F (x) has a finite second moment, or more generally that E{(X+

1 )2} < ∞. Under
this assumption, the stopping rule

N∗ = min{n ≥ 1 : Xn > V ∗} (1)

maximizes E(Xn − nc) among all stopping rules, where V ∗ satisfies
∫ ∞

V ∗
(x − V ∗)dF (x) = c. (2)
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In addition, V ∗ = E(XN∗ − N∗c) is also the optimal expected return.

The statement of the problem and its solution requires only the first moment of F (x)
to be finite. In particular, the stopping rule (1) still gives expected return V ∗. Yet the
proofs of optimality of N∗ seem to require that the second moment of F (x) be finite. Is
a finite second moment really needed? By an elegant direct argument based on Wald’s
equation and using only the assumption that EX+ < ∞, Robbins (1970) shows that the
rule N∗ given by (1) with V ∗ given by (2) is still optimal. However, he uses a slightly
different definition of optimality, namely, he defines N∗ to be optimal if it maximizes
E(XN − Nc) within the class of stopping rules, N , such that E(XN −Nc)− > −∞.

This seems innocuous enough. Who would like to accept a random reward the ex-
pectation of whose negative part is −∞? The trouble is that this restriction also excludes
payoffs the expectation of whose positive part is +∞. If E(XN − Nc)− = −∞ and
E(XN − Nc)+ < ∞, then you don’t need to exclude N . The rule N∗ is definitely better.
So a slightly stronger definition of optimality would be to restrict consideration to stopping
rules N such that E(XN − Nc)+ < ∞. This looks more questionable. Why should one
exclude rules with infinite positive expectation?

Is a finite second moment necessary for N∗ to be optimal out of all stopping rules?

2. Necessity of E{(X+)2} < ∞. Robbins’ result certainly provides an extension of
the optimal property of the rule N∗ that is valid even if E(X+)2 = ∞. However, there
are difficulties of interpretation that arise because of the restriction to stopping rules that
satisfy E(XN −Nc)+ < ∞. Restricting attention to such rules seems to say that any rule,
N , with E|XN −Nc| < ∞, no matter how bad, is better than a rule whose expected payoff
does not exist because E(XN − Nc)− = −∞ and E(XN − Nc)+ = +∞. For what W do
you prefer a gamble giving you a payoff of $W to a gamble giving you $Z, where Z is
chosen from a standard Cauchy distribution? Answering such questions seems to require
an extension to standard utility theory.

One important question that arises is whether or not there are some distributions of
X with E(X+)2 = ∞ for which all stopping rules have E(XN − Nc)+ < ∞. Then, at
least for some distributions with infinite second moment one could say that N∗ is optimal
among all stopping rules. It will be shown that for all distributions F with E(X+)2 = ∞,
there exist stopping rules, N , such that E(XN − Nc)− = −∞ and E(XN − Nc)+ = +∞.

Theorem 1. If X,X1,X2, . . . are i.i.d. with EX+ < ∞ and E(X+)2 = ∞, then the
stopping rule,

N = min{n ≥ 1 : Xn ≥ 2nc} (3)

satisfies E(XN − Nc)+ = ∞.

Thus no new examples of optimality within the class of all stopping rules may be
found using Robbins’ result. Proofs are deferred to the appendix.

3. A Stronger Result. As it stands, Theorem 1 would not impress Robbins.
Robbins requires that stopping rules stop with probability one. This contrasts with others
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that allow stopping rules, N , such that P(N = ∞) > 0 (see for example the electronic
text, Ferguson (2006)). This allows treatment of more general problems, for example bandit
problems, but it requires specifying what the payoff will be if N = ∞. Generally, one may
force the decision maker to use rules, N , that stop with probability one by choosing the
payoff to be −∞ if N = ∞.

However in this problem, the restriction to stopping rules that stop with probability
one is very reasonable. All Theorem 1 really says is that if E(X+)2 is infinite, a prophet
can get an infinite expected return. He simply stops at N if there exists an n such that
Xn > 2nc and stops at n = 1 otherwise. It seems that those of us without superpowers
must be satisfied with V ∗ or risk not stopping and so receiving infinite loss.

Therefore to satisfy Robbins, we need to answer the question: For what distributions
of X with finite first moment and E(X+)2 = ∞ is it true that there exists stopping rules N
that stop with probability one and for which E(XN −Nc)+ = ∞? The answer is contained
in the following theorem.

Theorem 2. If X,X1,X2, . . . are i.i.d. with EX+ < ∞ and E(X+)2 = ∞, then there
exists a stopping rule, N , with P(N < ∞) = 1 such that E(XN − Nc)+ = ∞, for all
c < ∞.

Thus there are no distributions with infinite positive second moment for which we may
dispense with Robbins’ restriction to stopping rules, N , such that E(XN − Nc)+ < ∞.

It is interesting to note that the stopping rule, N , of Theorem 2 does not depend
on c. The proof is constructive. In addition, the stopping rule has the simple form,
N = min{n : Xn > an} for some sequence of constants, an.

4. Optimality of N∗ among all stopping rules. To extend Robbins’ result to
make it valid for all stopping rules, we must therefore find some way to compare two payoff
distributions whose first moments don’t exist. Certainly if given the choice between two
Cauchy distributions with the same interquartile range, we would prefer the one with the
higher median. More generally, we would prefer F to G if F stochastically dominates G
(i.e. if F (x) < G(x) for all x). There are many ways to extend this idea further. One
sufficient for the problem at hand is the following.

We say that a lottery from a distribution G is preferred to a 0 payoff if for i.i.d.
Z1, Z2, . . . from G we have (1/n)

∑n
1 Zi

a.s.−→ γ for some 0 < γ ≤ ∞. For a distribution
G with finite mean, this just means that a lottery from G is preferred to 0 if the mean
of G is positive. For a distribution G whose mean does not exist, it can still happen that
(1/n)

∑n
1 Zi

a.s.−→ +∞, in which case we prefer G to 0. This can happen if the mass on the
positive axis dominates the mass on the negative axis, even though the expectation of the
positive and negative parts are both infinite.

Similarly, we prefer 0 to a lottery from G if for i.i.d. Z1, Z2, . . . from G we have
(1/n)

∑n
1 Zi

a.s.−→ −∞. More generally, we prefer a lottery for G1 to a lottery for G2 if for
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i.i.d. Y1, Y2, . . . from G1 and independent i.i.d. Z1, Z2, . . . from G2, we have (1/n)
∑n

1 (Yi−
Zi)

a.s.−→ γ for some 0 < γ ≤ ∞.

Using this extension of the definition of preference between lotteries, one can show that
Robbins’ result is true without restricting the stopping rules one considers. In the paper
of Robbins and Samuel (1966), an extension of the definition of mathematical expectation
is given which is useful in this context.

Definition. For a random variable X, we say that the extended expectation of X exists
and is equal to µ, in symbols ÊX = µ, if

1
n

n∑
i=1

Xi → µ a.s. (5)

when X1,X2, . . . are i.i.d. with the same distribution as X.

If EX exists, then ÊX = EX, including the case where EX = ±∞. However, if EX
does not exist, it still may happen that (1/n)

∑n
1 Xi converges almost surely to +∞ or

−∞. Thus, Ê is indeed an extension of the notion of expectation.

Using this notion, we can state the optimality of the stopping rule (1) for the house
hunting problem.

Theorem 3. In the house hunting problem with finite first moment, the stopping rule
N∗ of (1) is optimal in the sense that for all stopping rules N , Ê(XN − Nc) ≤ V ∗.

In other words, if E(X+) < ∞, then for any stopping rule, N , either XN − Nc has
finite expectation less than or equal to V ∗, or its extended expectation is −∞.

5. A Near Counterexample. If the first moment of X barely exists in the sense
that EX+ < ∞ and EX+ log+(X+) = ∞, then there is a stopping rule that looks as if it
might be a counterexample to Theorem 3.

Theorem 4. If EX+ < ∞ and EX+ log+(X+) = ∞, then there exists a stopping rule of
the form N = min{n ≥ 1 : Xn > an} for some sequence an → ∞ such that P(N < ∞) = 1,
and

∞∑
n=1

E{(Xn − nc) I(N = n)} =
∞∑

n=1

P(N > n − 1)E{(X − nc) I(X > an)} = ∞ (6)

for all c > 0.

Note that, again, N does not depend on c.

To see how curious this result is, examine the second sum in (6). The stopping rule N
stops with probability 1, and when it stops at stage n, the conditional payoff given N = n
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is simply E{(X − nc) I(X > an)}, a fairly large positive number, even though stopping
may occur at negative values of Xn − nc. This has to be multiplied by the probability
of reaching that stage which is P(N > n − 1) =

∏n−1
i=1 F (ai). The product of this and

E{(X − nc) I(X > an)} is the summand of the second sum, and is a fairly small number.
Nevertheless, if you add up all these small numbers, you get +∞. Doesn’t that seem better
than receiving V ∗ as the payoff?

The catch is, of course, that this summation is not equal to E(XN − Nc), which
doesn’t exist. This is an example where the expectation of the sum is not the sum of the
expectations. Worse, the sum of the expectations is +∞ while the generalized expectation
of the sum is −∞; in other words, if you take a sample from the distribution of XN −Nc,
the average of the sample will tend to −∞, a.s.

APPENDIX

Proof of Theorem 1. We show that the rule N = min{n ≥ 1 : Xn ≥ 2nc} gives
E(XN − Nc)+ = ∞ when EX+ < ∞ and E(X+)2 = ∞.

E(XN − Nc)+ =
∞∑

n=1

E(Xn − nc)I(N = n)

≥
∞∑

n=1

ncP(N = n)

=
∞∑

n=1

ncP(N > n − 1)P(Xn > 2nc)

≥
∞∑

n=1

ncP(N = ∞)P(Xn > 2nc) = ∞,

(6)

since E(X+)2 = ∞ implies
∑∞

n=1 nP(Xn > 2nc) = ∞, and

P(N = ∞) = P(Xn < 2nc for all n)

=
∞∏

n=1

P(Xn < 2nc) =
∞∏

n=1

(1 − P(Xn ≥ 2nc))

∼ exp{−
∑

P(Xn > 2nc)} ∼ exp{−EX+/2c} > 0.

(7)

Proof of Theorem 2. Without loss of generality, assume that X > 0 and that X has
a continuous distribution function. (Otherwise, only stop when X > 0 and replace the
distribution of X with the distribution of XU where U has a uniform(0,1) distribution
independent of X.) Since E(X+)2 = ∞, we have

∞∑
k=1

∫ ∞

k

P(X > y)dy = ∞. (8)
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Let

Ek =
∫ ∞

k

P(X > y)dy and Qk = E1 + E2 + · · · + Ek, (9)

for k > 0. Then,
∑

k Ek = ∞ and Qk → ∞. It is also true that

∞∑
k=1

Ek

Qk
= ∞. (10)

See, for example, Rudin (1976), Problem 11(b) page 79. Let n∗ be the smallest k such
that Qk > 1. Let an∗ be defined by

P(X ≤ an∗) =
1

Qn∗

(11)

and for k > n∗, let ak satisfy

P(X ≤ ak) =
Qk−1

Qk
. (12)

Let N = min{k ≥ n∗ : Xk > ak}. Notice that for n > n∗.

P(N > n) = P(∩n
k=n∗{Xk ≤ ak})

=
1

Qn∗

n∏
k=n∗+1

Qk−1

Qk
=

1
Qn

→ 0.
(13)

Hence N stops with probability one. (This may also be seen using
∑

k>n∗+1 P(X > ak) =∑
k>n∗+1(1 − (Qk−1/Qk)) =

∑
k>n∗+1(Ek/Qk) = ∞; so P(Xn > an i.o.) = 1.)

Notice that for any 1 < c < ∞,

P(X > ak)
P(X > ck)

=
Ek

QkP(X > ck)
≥ (c − 1)kP(X > ck)

QkP(X > ck)
=

(c − 1)k
Qk

→ ∞. (14)

In particular, Qk < ck from some point on.

Fix any c > 1. There exists nc such that Qk ≤ ck for all k ≥ nc. Therefore,

E(XN − Nc)+ =
∞∑

k=nc

∫ ∞

ck

P(X > y)dyP(N > k − 1) =
∞∑

k=nc

Eck

Qk−1

≥
∞∑

k=nc

Eck

Qck
>

1
2c

∞∑
j=cnc

Ej

Qj
= ∞.

(15)
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Proof of Theorem 3. We use the cute idea, cited in the paper of Robbins (1970) as due
to David Burdick, entailed in the inequality

Xn − nc = v + (Xn − v) − nc

≤ v + (Xn − v)+ − nc

≤ v +
n∑
1

(Xi − v)+ − nc

= v +
n∑
1

((Xi − v)+ − c)

= v +
n∑
1

Wi

(16)

where Wi = (Xi − v)+ − c. Now choose v to be any number greater than V ∗. The Wi

are i.i.d. with expectation EWi < 0 since v > V ∗. Let N be an arbitrary stopping rule.
We show below that Ê

∑N
1 Wi < 0; this implies that Ê(XN − Nc) < v and, since v is an

arbitrary number greater than V ∗, that Ê(XN −Nc) ≤ V ∗.

We now use the idea of Blackwell (1946) in his proof of Wald’s Equation. Consider
n stopping problems as follows. Let N1 be the stopping rule N applied to the sequence
W1,W2, . . ., let N2 be the stopping rule N applied to WN1+1,WN1+2, . . ., etc., and let Nn

be the stopping rule N applied to WN1+···+Nn−1+1, WN1+···+Nn−1+2, . . .. Let the returns for
these problems be denoted by Z1, . . . , Zn where Zj = WN1+···+Nj−1+1 + · · ·+ WN1+···+Nj .
Then, the Zj are independent with the same distribution as

∑N
1 Wi, and we have

Z1 + · · · + Zn

n
=

W1 + · · · + WN1+···+Nn

N1 + · · · + Nn
· N1 + · · · + Nn

n
. (17)

From the strong law of large numbers, the first term on the right of (17), (W1 + · · · +
WN1+···+Nn)/(N1 + · · · + Nn), converges a.s. to EWi < 0. The second term on the right
of (17), N1 + · · · + Nn)/n converges a.s. to EN , whether EN is finite or +∞. Therefore,
the left side of (17) converges a.s. to EWiEN < 0. This shows that Ê

∑N
1 Wi < 0 as was

to be shown.

Proof of Theorem 4. Again assume without loss of generality that X > 0 and that X
has a strictly increasing continuous distribution function on (0,∞). Let

ϕ(b) = E(X|X > b) =
E(X I(X > b))

P(X > b)
.

Then ϕ(b) is increasing and continuous and the inverse function, b(y) = ϕ−1(y) is well-
defined by

ϕ(b(y)) = E(X|X > b(y)) = y (18)
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for y ≥ E(X). Clearly, b(y) is increasing, limy→∞ b(y) = ∞, and b(y) < y. Then

∞∑
n=1

P(X > b(n)) =
∞∑

n=1

1
n

E{X I(X > b(n))}

=
∞∑

n=1

(
n∑

j=1

1
j
)E{X I(b(n) < X ≤ b(n + 1))}

≥
∞∑

n=1

E{X log(ϕ(X)/2) I(b(n) < X ≤ b(n + 1))}

(19)

Therefore, using ϕ(y) > y,

∞∑
n=1

P(X > b(n)) ≥ E{X log(X/2) I(X > b(1))} = ∞. (20)

There exist constants, γk, increasing to infinity such that

∞∑
k=1

P(X > b(kγk)) = ∞. (21)

Let ak = b(kγk). Notice that as in the first line of (19),

P(X > ak) =
E{X I(X > ak)}

kγk
= o(1/k). (22)

There exists a k∗ such that

P(X > ak) <
1
2k

for all k ≥ k∗. (23)

Let N = min{k ≥ k∗ : Xk > ak}. Then from (23) and Borel-Cantelli, P(N < ∞) = 1.
Now fix any c > 1 and choose kc so that ak > b(2ck) for all k ≥ kc. Notice that for k > k∗,

P(N > k) = P(Xj ≤ aj for k∗ ≤ j ≤ k)

=
k∏

j=k∗

(1 − P(X > aj))

≥
k∏

j=k∗

2j − 1
2j

>
2k∗ − 1

2k
≥ 1

2k

(24)
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Putting these inequalities together,

∞∑
n=kc

P(N > n − 1)E{(X − cn) I(X > an)}

=
∞∑

n=kc

P(N > n − 1)E((X − cn) I(X > b(nγn))) (def. of an)

=
∞∑

n=kc

P(N > n − 1)[nγn − cn]P(X > b(nγn)) (from (18))

>
1
2

∞∑
n=kc

(γn − c)P(X > b(nγn)) (from (24))

= ∞ (since γn → ∞ and (21))
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