
Maximizing the duration of owning a relatively best object1

T. S. Ferguson, UCLA
J. P. Hardwick2, University of Michigan

M. Tamaki, Aichi University
1/9/91

Abstract: A version of the secretary problem in which the objective is to maximize the time

of possession of a relatively best object is treated. The basic no-information model is related to

the Presman-Sonin best-choice problem with a random number of objects. A best-choice duration

model similar to one suggested by Gaver is also solved. Extensions to models with a discount, to

full-information models, and to problems with and without recall are made. Finally, the duration

versions of the random arrival models of Cowan, Zabczyk and Bruss in the no-information case and

of Sakaguchi and Bojdecki in the full-information case are solved.

1. Introduction and Summary

We consider a sequential observation and selection problem called the duration prob-
lem, which is a variation of the classical secretary problem, treated for example by Gilbert
and Mosteller (1966). A decision maker must select one object from a set of n rankable
objects. The objects are observed sequentially in random order with all n! orderings being
equally likely. As each object is observed, the decision must be made whether to select
the object or to continue and observe the next object. The distinguishing feature of the
problems treated in this paper is that the payoff to the decision maker is the length of
time he is in possession of a relatively best object. Thus, he will only select a relatively
best object, receiving a payoff of one as he does so and an additional one for each new
observation as long as the selected object stays relatively best.

In Section 2, we treat models in which the decision to select an object must be based
only on the relative ranks of the objects observed. Such models are called no-information
models.
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The classical secretary problem (CSP) is a best-choice problem; the payoff is one if
and only if the selected object is best overall. In Section 2.1, we define a class of relatively-
best-choice problems that contains the problems treated in Section 2, and in Lemma 1
state a condition under which an optimal threshold rule exists.

Another distinguishing feature of the CSP is that an object, once rejected by viewing
the next object, is no longer available for selection. The problems treated this paper are
also of interest if this restriction is removed. Thus in Section 2.2, we treat two cases–
sampling with recall, in which any of the observed objects may be selected, and sampling
without recall, in which only the most recently observed object may be selected. (The
terminology is that of DeGroot (1970) for problems of selling an asset.)

A problem of maximizing the duration of owning a relatively best object has also
been considered by Gaver (1976). Several features distinguish his model from ours. First,
Gaver treats random arrival models, in which the times at which the objects arrive follow
a Poisson process, and since the horizon is finite, the actual number of objects observed
becomes random. Second, you only receive the payoff if the object selected is best overall.
In Section 2.3, we consider the payoff of Section 2.2 modified by this second feature.

In Section 2.4, we treat the problems of Section 2.2 in which the future is discounted
by β, a payoff of 1 received at time t being worth βt. For such problems, we allow an
infinite horizon, and investigate the asymptotics as β → 1. The problems of Sections 2.2
and 2.4 are related to best-choice problems with a random number of objects as treated
by Presman and Sonin (1972).

In contrast to the no-information problem, the full-information problems are those in
which the observations are the true values of the objects, assumed to be independent and
identically distributed from a known distribution, taken without loss of generality to be
the uniform distribution on the interval [0, 1]. In Section 3, we treat the full-information
versions of the various problems of Section 2 and see that the solutions differ in significant
ways. The finite horizon and discount problems are related to the full-information best-
choice problems with a random number of objects as treated by Porosiński (1987).

In the final section, we treat the duration problem in two random arrival models. The
first is a no-information model with Poisson arrivals solved in the classical best-choice case
by Cowan and Zabczyk (1976) for known arrival rate. Here, we extend to the duration
problem the more realistic model of Bruss (1987) in which the arrival rate is unknown and
has a prior exponential distribution. The second is an extension of the full- information
model of Sakaguchi (1976) and Bojdecki (1978).

2. No-Information Models.

We assume that all that can be observed are the relative ranks of the objects as they
are presented. Thus, if Xj denotes the relative rank of the jth object among the first j
objects (rank 1 being best), the sequentially observed random variables areX1,X2, . . . ,Xn.
It is well known, under the assumption that the objects are put in random order with the
n! orderings being equally likely, that

(2.1) the Xj are independent random variables, and
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(2.2) P (Xj = i) = 1/j for i = 1, 2, . . . , j, for j = 1, 2, . . . , n.

In the discounted version of the duration problem, we allow a countable number of obser-
vations, so in (2.2) we allow n to be ∞.

2.1 Relatively-Best-Choice Problems.

A best-choice problem is one in which the payoff is positive only if the selected object
is the best out of all n objects; that is, if the jth object is selected, the payoff is positive
only if Xj = 1 and Xj+1 > 1, . . . ,Xn > 1. We generalize the notion of a best choice
problem slightly, allowing an infinite number of observations.

We say that a secretary problem is a relatively-best-choice problem if the payoff for
stopping at k (selecting object k) is of the form

(2.3) Yk = ykI(Xk = 1),

where the yk are given nonnegative constants and I(A) represents the indicator function
of the event A.

In the following lemma, we show that there is an optimal threshold rule for this
problem, provided the sequence yk is unimodal. A threshold stopping rule with threshold r
is a stopping rule of the form

(2.4) Nr = min{k ≥ r : Xk = 1}

for some r = 1, 2, . . .. The proof is an extension of the argument used by Gilbert and
Mosteller (1966) in the CSP.

Lemma 1. For the relatively-best-choice problem (2.3), if yk is unimodal in the sense that
for some finite integer K, yj ≤ yj+1 for j < K and yj ≥ yj+1 for j ≥ K, then there is an
optimal rule among the threshold rules Nr for r ≤ K.

Proof. If stage K is reached, it is clearly optimal to select the next relatively best object,
since continuing cannot increase the payoff. Let Wj = supN>j E(YN |X1, . . . ,Xj); these
quantities are constants because of the independence (2.1). For j ≤ K, the backward
induction equations are

(2.5) Wj−1 = Emax(Yj ,Wj) for j = 1, . . . ,K,

with boundary condition,WK = EYNK , and it is optimal to stop at j withXj = 1 provided
yj ≥ Wj . Note that for all j, Wj ≥ Wj+1.

Suppose it is optimal to stop at j < K with Xj = 1; i.e. suppose yj ≥ Wj . Then
since yj ≤ yj+1, we have yj+1 ≥ yj ≥ Wj ≥ Wj+1. Hence, it is optimal to stop at j + 1
with Xj+1 = 1, completing the proof.

2.2. The Finite-Horizon Duration Problem.

For the CSP, we have
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(2.6) yk = P (Xk+1 > 1, . . . ,Xn > 1) = k/n
yk = 0

for k ≤ n, and
for k > n.

Lemma 1 applies since the yj are unimodal with mode K = n. As is well known, the
optimal rule is the threshold rule, Nrn , with

(2.7) rn = min{k ≥ 1 :
n−1∑
j=k

1/j ≤ 1}.

For the duration problem, we define Tk as the time of the first relatively best object
after k if there is one, and as n+1 if there is none. The duration of posessing a relatively
best object selected at time k is Tk − k. Instead of maximizing the expected duration of a
selection, we choose to maximize the expected proportion of time one is in the possession of
a relatively best object, in order to make the solution more easily comparable to the CSP
and other problems. Then, this becomes a relatively-best-choice problem by definition
(2.3) with yk = E(Tk − k)/n.

Theorem 1. (a) In the finite horizon duration problem, the expected return for stopping
at k,

(2.8) yk = (k/n)
n∑

j=k

1/j,

is unimodal with mode at the value

(2.9) Kn = min{k ≥ 1 :
n∑

j=k+1

1/j ≤ 1}.

(b) The expected payoff using the threshold rule (2.4) is

(2.10) φr = E(YNr) =
(r − 1)

n

n∑
k=r

1
(k − 1)

n∑
j=k

1
j
.

Proof. (a) We have P (Tk = n + 1) = k/n and for j = k + 1, . . . , n, P (Tk = j) =
k/((j − 1)j). Hence,

yk = E(
Yk − k

n
) =

n∑
j=k+1

k(j − k)
(j − 1)jn +

k(n+ 1− k)
n2

=
1
n

n∑
j=k

k

j
.

To check unimodality, compute yk+1−yk =
∑n

j=k+1 1/j − 1 and note that this is decreasing
in k. The mode is the first k for which yk+1 − yk ≤ 0.
(b) φr =

∑n
k=r P (Tr−1 = k)yk =

∑n
k=r(r − 1)/((k − 1)kn)

∑n
j=k k/j

= (1/n)
∑n

k=r(r − 1)/(k − 1)
∑n

j=k 1/j.
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We now apply this theorem to the finite horizon duration problem both with and
without recall, and see that the solutions are already in the literature.

First consider the problem of sampling without recall. Since the yk are unimodal,
Lemma 1 implies that one of the threshold rules Nr is optimal. So the optimal rule is
Nr for that r that maximizes φr. However, from the papers of Presman and Sonin (1972)
and Rasmussen and Robbins (1976), we see that φr is exactly the expected payoff for the
threshold rule Nr for the best-choice secretary problem with an unknown random number
of objects having a uniform distribution on {1, . . . , n}. (In this problem, if you pass up all
the objects without making a selection, you lose.) In these papers, it is shown that the
optimal value of r is

(2.11) r∗n = min{r ≥ 1 :
n∑

k=r+2

1
k − 1

n∑
j=k

1
j
≤

n∑
j=r+1

1
j
},

and that r∗n/n → 1/e2 = .1353 . . . with bounds (n + 1)/e2 < r∗n < (n + 1)/e2 + 1.5. The
optimal payoff converges to 2/e2 = .2707.

Corollary 1. In the finite horizon duration problem without recall, the optimal rule is the
threshold rule Nr with r = r∗ of (2.11).

The fact that the problem treated here and the problem treated by Presman and
Sonin (1972) have the same payoff (2.10) for threshold rules is an example of a general
method of Samuels (1990) for relating problems with random horizon to problems with a
cost.

Now consider the problem of sampling with recall. We may choose to stop at any
time and when we do we naturally select the best object we have seen so far, receiving an
expected payoff of yk if we stop at stage k, independent of the observations, X1, . . . ,Xk.
Thus, we stop at that k for which yk is largest, namely k = Kn.

Corollary 2. In the finite horizon duration problem with recall, the optimal rule is the
fixed sample size rule, N = Kn.

There is a simple relation between the cutoff point, rn of (2.7), for the CSP, and the
cutoff point, Kn of (2.10), for the duration problem with recall; namely

(2.12) Kn = rn+1 − 1 for n ≥ 2.

In particular, Kn/n → 1/e as n → ∞, and the optimal expected payoff converges to 1/e.
One may show that this is also the optimal rule for the Presman-Sonin problem with

a random uniform number of objects when recall is allowed. This is not immediate since
the expected return for stopping at k is not (2.8) but rather yk = (k/(n − k))

∑n
j=k 1/j.

Nevertheless, the fixed sample size rule N = Kn is the one-stage look-ahead rule and the
problem is monotone, so N is optimal. It is interesting that although sampling with recall
makes sense for most secretary problems with a random number of objects, such problems
do not seem to have been studied as much, even though they are in general easier.
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2.3 The Best-Choice Duration Problem.

We modify the payoff structure of the previous section by requiring that the selected
object be best overall; that is, we win an amount equal to the proportion of time we own
the object provided it is best overall, and we win nothing if it is not best. If we select a
relatively-best object at time k, we win (n− k + 1)/n provided the object is best overall.
This is a relatively-best-choice problem by definition (2.3) where the yk are given as

(2.13) yk = ((n − k + 1)/n)P (Tk = n+ 1) = (n− k + 1)k/n2

Since n2(yk+1−yk) = n−2k, we see that yk is unimodal with mode at the first k for which
this is nonpositive, namely

(2.14) Ln = 	n+ 1
2


.

Thus, there is an optimal rule among the threshold rules Nr for some r ≤ Ln.

Theorem 2. In the best-choice duration problem, the optimal rule is Nr∗ where

(2.15) r∗(n) = min{r ≥ 1 : n
n∑

k=r+1

1
k − 1 ≤ 2n− 2r + 1}.

Proof. The expected payoff using threshold rule Nr is, for r = 1, . . . , n+ 1,

(2.16) φr = E(YNr) =
n∑

k=r

P (Tr−1 = k)yk =
(r − 1)

n

n∑
k=r

n− k + 1
(k − 1) .

To see which of the φr is largest, we look at the differences for r = 1, . . . , n,

(2.17) n(φr+1 − φr) =
n∑

k=r+1

n− k + 1
k − 1 − (n − r + 1).

By taking a second difference, we find that (2.17) is decreasing for r < Ln and increasing
thereafter, taking a negative value at r = n. Therefore, the largest value of φr occurs at
the first r at which (2.17) is negative. This reduces to (2.15), completing the proof.

It is of interest to find an approximation to r∗(n) for large n. If we divide both sides
of the inequality on the right side of (2.15) by n and let n → ∞, we find that r∗(n)/n → α
where α = .20388 . . . is the root of the equation,

(2.18) f(α) = − log(α)− 2 + 2α = 0,

between zero and one. This gives the approximation, r∗(n) = nα. A more accurate
approximation to r∗(n) may be found using the Euler summation formula approximation,
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∑n
1 1/k = log(n) + γ − 1

2n + εn, where γ is Euler’s constant and where 0 < εn < 1
12n2 .

Write (2.15) in the form,

r∗(n) = min{r ≥ 0 :
n∑

k=r+1

1
k
≤ 2− 2r

n
}+ 1

= min{r ≥ 0 : f(r/n) ≤ n− r

2rn
+ εr − εn}+ 1,

where |εr − εn| < 1/(12r2) is negligible in the limit. Use the expansion, f(r/n) = ((r/n)−
α)f ′(α) + · · ·, where f ′(α) = −((1/α) − 2), and replace the term, (n − r)/(2nr), by its
approximation, (1− α)/(2α(1 − 2α)), to find

r∗(n) = min{r ≥ 0 : r ≥ nα− 1− α

2α(1 − 2α)}+ 1.

Replacing α by its value leads to the approximation,

(2.19) r∗(n) = 	0.20388n+ 1.3279
.

The limiting value of the expected payoff as n → ∞ and r/n → x is easily found to be

(2.20) φr → −x log(x)− x(1 − x).

Evaluating this at x = α gives the optimal return, .1618 . . ..

These results agree with the asymptotic results found by Gaver (1976). In the model
of Gaver, the objects arrive at random times given by the points of a Poisson process on
[0, 1] at rate λ. As λ → ∞, the number of arrivals tends to infinity, and the fact that there
are a random number of arrivals does not seem to matter. Gaver derives formula (2.20) as
the limiting payoff for λ → ∞ of the fixed sample size rule that waits until time x and then
selects the next relatively best object, and finds x = α as the optimal rule in this class.
Gaver also treats the random arrival best-choice problem. For finite λ, his formulas (6.6)
and (6.7) for the expected payoff are inaccurate, but may easily be corrected by adding
the term, e−λTφ(U,−∞), a term that becomes negligible as λ → ∞.

The best-choice duration problem with recall is easily treated. If we select the best
we have seen so far at time k, we receive yk. So the optimal rule is the fixed sample size
rule that stops at Ln. The optimal return converges to 1/4.

2.4 The Discount Model.

We now allow an infinite horizon but discount future payoffs by an amount β per
period, 0 < β < 1. To make expected payoffs comparable to those of the previous sections,
we multiply the return by (1 − β). Thus, an amount of 1 received at time k is worth
(1− β)βk at time 0.
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If the kth object is relatively best, and if we select it, our conditional expected return
is for k = 1, 2, . . .,

yk =
∞∑

j=k

(1− β)βjP (Tk > j)

= (1− β)k
∞∑

j=k

βj/j.

To check unimodality, compute the differences

(yk+1 − yk)/(1− β) = (k + 1)
∞∑

j=k+1

βj/j − k

∞∑
j=k

βj/j

= βk
[ ∞∑
j=1

βj/(k + j)− 1
]
.

So the yk are unimodal with mode at

(2.23) K(β) = min{k ≥ 1 :
∞∑

j=1

βj 1
k + j

≤ 1}.

When k = 1, the sum in (2.23) is equal to − 1
β log(1−β)−1, soK(β) = 1 if− log(1−β) < 2β.

This becomes β < 1− α, where α is given in (2.18). This implies that for β < .79612 . . .,
the yk are decreasing, so it is optimal to select the first object. The general result is as
follows.

Theorem 3. In the discounted duration problem, the optimal rule is Nr∗ where

(2.24) r∗(β) = min{r ≥ 1 :
∞∑

j=r+1

βj/j

j∑
k=r+1

1/(k − 1) ≤
∞∑

j=r

βj/j}.

Proof. Since the yk are unimodal with mode at K(β), we know that there exists an
optimal threshold rule, Nr, for some r ≤ K(β). The expected payoff using Nr is

(2.25)

φr = E(YNr) =
∞∑

k=r

P (Tr−1 = k)yk

= (1− β)(r − 1)
∞∑

k=r

1
k − 1

∞∑
j=k

βj/j for r > 1

= y1 for r = 1.

Again, we consider the differences

(2.26) (φr+1 − φr)/(1− β) =
∞∑

k=r+1

1
k − 1

∞∑
j=k

βj/j −
∞∑

j=r

βj/j.
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The first r at which (2.26) is less than or equal to zero reduces to (2.24). To show this is
optimal, it is sufficient to show that if (2.26) is nonpositive for some r ≤ K(β), then it is
also nonpositive for r + 1. Hence, assume that (2.26) is nonpositive and that r ≤ K(β),
that is, that

∑∞
r+1 β

j/j ≥ βr. Then,

(2.27)

(φr+2 − φr+1)/(1 − β) =
∞∑

k=r+1

1
k − 1

∞∑
j=k

βj/j − r + 1
r

∞∑
r+1

βj/j

≤
∞∑

j=r

βj/j − r + 1
r

∞∑
r+1

βj/j (using (2.26)≤ 0)

= βr/r − 1
r

∞∑
r+1

βj/j ≤ 0,

completing the proof.

It may be shown that the expected return (2.25) is exactly the same as the expected
return using the same rule, Nr, in the Presman-Sonin model with an unknown random
number of objects having a geometric distribution with probability β, (P (n objects) =
(1−β)βn−1). Since Presman and Sonin show that there is an optimal rule of the form Nr

for some r, the rule Nr∗ is optimal for this problem as well.

The infinite sums that appear above for yk, φr, etc. converge slowly, but they may be
reduced to finite sums by applying the following lemma.

Lemma 2. Let θ = − log(1 − β). For r ≥ 1,

(2.28)
∞∑

j=r

βj

j
= θ −

r−1∑
j=1

βj

j

(2.29)
∞∑

k=r+1

1
k − 1

∞∑
j=k

βj

j
=

θ2

2
−

r−1∑
i=1

1
i

[
θ −

i∑
j=1

βj

j

]
.

Proof. Equation (2.28) follows from the power series expansion for − log(1−β). To check
(2.29), first let f(θ) denote the left side of (2.29) when r = 1, and note that f(0) = 0,
f ′(0) = 0 and f ′′(θ) ≡ 1. Hence, f(θ) = θ2/2. The rest of (2.29) for r > 1 now follows
from this using (2.28).

Using this lemma, we find that φ1 = y1 = −(1 − β) log(1 − β), and φ2 = (1 −
β)(log(1−β))2/2. Since r∗(β) = 1 if and only if φ1 ≤ φ2 or, equivalently, − log(1−β) ≥ 2,
(i.e. β ≤ 1 − e−2), this implies that it is optimal to select the first object if and only if
β ≤ .86466 . . ..

For values of β close to 1, the threshold points r∗(β) are more difficult to compute.
We investigate asymptotic approximations as β → 1. With β replaced by 1 − (1/n), the
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inequality in (2.24) may be expressed as

∞∑
j=r+1

((1− 1
n )

n)j/n

j/n

[ j∑
k=r+1

1
(k − 1)/n

1
n
− 1

]
1
n
≤ 0.

If we let r/n → x (i.e. r(1−β) → x), this is a Riemann sum approximation to the integral,

(2.30)
∫ ∞

x

e−y

y

[∫ y

x

1
z
dz − 1

]
dy =

∫ ∞

x

e−y

y

[
log(y/x)− 1

]
dy ≤ 0.

This is a decreasing function of x that has a unique root that may be evaluated numerically
to be x = .17404 . . .. In a similar manner, the limit of the expected payoff, φr of (2.25),
may be shown to converge as β → 1 and r(1 − β)→ x to

x

∫ ∞

x

1
z

∫ ∞

z

e−y

y
dy dz = x

∫ ∞

x

e−y

y
log(

y

x
)dy,

which evaluated at the root of the function (2.30) becomes x
∫ ∞

x
e−y/y dy = .17404 ×

1.338 = .23287 . . ..

Thus, we have the approximations r∗(β) � .17404/(1− β) and φr∗ � .23287. These
approximations were discovered by Presman and Sonin (1972) for the problem with a
random, geometric number of objects. The approximations for r∗(β) are quite good.
Exact calculations give r∗(.99) = 18, r∗(.999) = 174, and r∗(.9999) = 1740.

As in the previous two sections, the corresponding problem for sampling with recall has
an optimal fixed sample size rule, namely, stop at time K(β). For β close to one, we have
the approximation, K(β) � c/(1− β), where c = .4348 · · · satisfies

∫ ∞
0

e−y/(c+ y)dy = 1.
The asymptotic optimal return is yK(β) � ce−c = .2815 · · ·.

3. Full Information Models.

In full information models, the true worth of each object is observed as it appears. It is
assumed that the true worths of the objects are i.i.d. from a known continuous distribution
on the real line, taken without loss of generality to be the uniform distribution on the
interval [0,1]. An object is relatively best at time k if it possesses the largest true worth
seen by time k. We are to select a relatively best object with the view of maximizing the
duration it stays relatively best, and we may base our choice of a stopping time on the
true values.

Such problems are quite distinct from the problems studied in earlier sections. In
particular, an optimal rule at stage k will not depend on the number of objects seen so far,
but only on the maximum of the true values seen and on the number of observations yet to
see. The reason for this is similar to the argument for basing rules on sufficient statistics:
the distribution of future payoffs and observations depends on the past observations only
through these two quantities.
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3.1 The Finite Horizon Full Information Model.

We assume that X1,X2, . . . are i.i.d. random variables, uniformly distributed on [0,1],
where Xn denotes the value of the object at the nth stage from the end. We let w(x, n)
denote the expected payoff given that the nth object from the last is a relatively best
object of value Xn = x and we select it.

(3.1) w(x, n) = 1 + x+ x2 + · · ·+ xn−1 = (1− xn)/(1− x).

Since there is a finite horizon, the optimal rule can be found by backward induction. Let
v(x, n) denote the optimal expected return when there are n objects yet to be observed
and the present maximum of past observations is x. The v(x, n) are defined inductively by

(3.2) v(x, n) = xv(x, n − 1) +
∫ 1

x

max{w(t, n), v(t, n − 1)} dt

with initial condition, v(x, 0) ≡ 0. Thus, for example, v(x, 1) = 1− x.

Note that the w(x, n) are increasing in x for every n. Moreover, the v(x, n) are
nonincreasing in x for every n. The argument for v is quite general and independent of
the w(x, n): v(x, n) is the supremum of something over the set of strategies available at
state (x, n); this set contains the set of strategies available at (x′, n) when x′ > x so that
v(x′, n) cannot be larger than v(x, n).

Hence, there exists unique numbers xn such that if x ≥ xn, one should accept a
candidate of value Xn = x at n stages from the end. The values of the xn are as follows.

Theorem 4. In the full information duration problem, it is optimal to select a relatively
best object of value Xn = x at n stages from the end if x ≥ xn, where x1 = 0 and for
n > 1, xn is the unique root of the equation,

(3.3)
n∑

k=1

xk−1 =
n−1∑
k=1

xk−1
n−k∑
j=1

(1 − xj)/j

Proof. We show in fact that the rule described in the theorem is the 1-stage look-ahead
rule and that the problem is monotone. Then, since the horizon is finite, this rule is
optimal.

If we stop with a relatively-best object of value Xn = x, n stages from the end, we
receive w(x,n). If instead, we continue and select the next relatively-best object if any, we
expect to receive

(3.4) u(x, n) =
∑n−1

k=1 x
k−1

∫ 1

x w(t, n− k)dt
=

∑n−1
k=1 x

k−1
∑n−k

j=1 (1− xj)/j

The one-stage look-ahead rule calls for stopping if w(x, n) ≥ u(x, n); that is, if

(3.5)
n∑

k=1

xk−1(1 −
n−k∑
j=1

(1 − xj)/j) ≥ 0.

11



To show the problem is monotone, we must show that if this inequality holds for n it also
holds for n − 1, or equivalently, if the reverse inequality holds for n, then it also holds
for n + 1. We write the reverse inequality, after changing index from k to i = n − k and
cancelling xn−1, as

(3.6) 1 +
n−1∑
i=1

x−i[1−
i∑

j=1

(1− xj)/j] < 0.

If this is true for some n, then since the term in square brackets is decreasing in i, this
term must be negative for i = n and hence for i = n+1. Hence, inequality (3.6) also holds
for n+ 1, and the proof is complete.

Just as the duration problem of Section 2.2 is related to the random horizon best-
choice problem of Presman and Sonin (1972), the corresponding full-information duration
problem is related to the full-information random horizon best-choice problem of Porosiński
(1987). The optimal rule found in Theorem 4 is the same as the optimal rule found by
Porosiński for the full- information best-choice problem when the total number of objects
is given a uniform distribution on the integers {1, 2, ..., n}. Moreover, Porosiński gives an
asymptotic approximation for the xn that may be obtained as follows. Write xn as 1−zn/n
and write (3.3) in the form

(3.7)
n∑

k=1

(1− zn

n
)k−1[1−

n−k∑
j=1

(1 − (1 − zn

n
)j)/j] = 0.

In order for this to stay equal to zero as n → ∞, the zn must converge to a constant,
zn → z, where z satisfies the equation,

∫ 1

0

e−zv[1−
∫ 1−v

0

(1 − e−zu)/u du] dv = 0,

or, equivalently

(3.8)
∫ z

0

ev[1−
∫ v

0

1
u
(1 − e−u)du] dv = 0.

The root of this equation may be found by numerical methods to be z = 2.1198 . . .,
giving the approximation, xn � 1 − 2.1198/n. Tables of xn and its approximation for
n = 2, 3, . . . , 61, may be found in Porosiński’s paper. (Note that his bk is equal to our
xk+1.)

Sampling With Recall. If we are allowed to select any of the observed objects, then
it is easy to see that the one-stage look-ahead rule is optimal. If we stop n stages from
the end with an object of value x, then we receive w(x, n) as the expected payoff. If we
continue one stage and then stop, we expect to receive,

xw(x, n − 1) +
∫ 1

x

w(y, n − 1)dy =
n−1∑
j=1

xj +
n−1∑
j=1

1
j
(1− xj).

12



The one-stage look-ahead rule therefore stops n stages from the end if this is less than or
equal to w(x, n), that is if

(3.9)
n−1∑
j=1

1
j
(1− xj) ≤ 1.

Since the left side is decreasing in x, the set of x for which the one stage look ahead rule
calls for stopping is an interval of the form [xn, 1].

Theorem 5. In the full information duration problem with recall, it is optimal to stop n
stages from the end if the largest of the values observed is at least xn, where xn is the root
in [0, 1] of the equation

(3.10)
n−1∑
j=1

1
j
(1− xj) = 1.

Proof. Since the horizon is finite, it is sufficient to show that the problem is monotone.
Suppose then that x satisfies (3.9) for some n. We are to show that it satisfies (3.9) for
n− 1. But this is obvious since the left side gets smaller as n gets smaller.

One may show that this is also the solution to the full- information best-choice problem
with a uniform random number of objects when recall is allowed.

We may find asymptotic approximations to the xn. Replace x in (3.10) by (1 − z/n)
and take the limit as n → ∞ to find

∫ 1

0

1
y
(1− e−zy)dy = 1.

Numerical methods give z = 1.3450 · · · as the solution of this equation, leading to the
approximation, xn � 1− 1.3450/n. The accuracy may be judged by the following table.

n True Approx
3 .4142 .5516
10 .8549 .8655
50 .9727 .9731

3.2 The Best-Choice Duration Problem.

Here we treat the full information version of the problem treated in Section 2.3 where
we win the duration of owning the best object only if it is best overall. If w(x, n) represents
the expected payoff given that we select the nth object from the end and Mn = Xn = x,
then

w(x, n) = nxn−1.

The values, v(x, n), when there are n objects to be observed and the present maximum is
x, again satisfy the recursion (3.2) with initial condition, v(x, 0) ≡ 0. The same argument

13



shows that there are unique numbers xn such that one should accept a candidate of value
Xn = x ≥ xn, n stages from the end.

Theorem 6. In the full information best-choice duration poblem, it is optimal to select a
relatively best object of value Xn = x at n stages from the end if x ≥ xn, where x1 = 0
and for n > 1, xn is the unique root of the equation,

(3.11)
n−2∑
k=0

xk − nxn−1 = 0.

Proof. xn is the unique root of the equation, v(x, n − 1) = w(x, n). If the xn so found
are increasing, then for x > xn, with n stages to go and the present maximum value equal
to x, it is optimal to select the first object of value greater than x. Hence, for x > xn,

v(x, n) =
∑n

k=1 x
k−1

∫ 1

x
w(t, n+ 1− k)dt

=
∑n

k=1 x
k−1(1 − xn−k+1)

=
∑n−1

k=0 x
k − nxn

Then, xn+1 may be found by equating this to w(x, n + 1) and solving. For xn, this
becomes (3.11). To show that the xn are increasing, let fn(x) denote the left side of (3.11)
multiplied by 1− x so that

fn(x) = (2n− 1)xn − 2nxn−1 + 1.

This polynomial is one at x = 0 and zero at x = 1, and is decreasing for x < 2(n−1)/(2n−1)
and increasing thereafter. Hence, fn(x) has a unique root xn < 2(n − 1)/(2n − 1). We
will show that xn+1 > xn by showing that fn+1(xn) > 0. Write fn+1(x) − fn(x) =
xn−1(1− x)(2n − (2n+ 1)x). Then, fn+1(xn) = xn−1

n (1− xn)(2n − (2n+ 1)xn) > 0 since
xn < (2n− 2)/(2n− 1) < 2n/(2n+ 1), completing the proof.

Asymptotically as n → ∞, we find xn � 1 − α
n , where α satisfies e

α = 1 + 2α, or
α = 1.25643 · · ·.

n True Approx
2 .3333 .3718
10 .8719 .8744
50 .9748 .9749

With Recall. Assume we are allowed to recall past observations and that we are n stages
from the end with Mn = x. If we stop we receive w(x, n) = nxn−1; if we continue one
stage and stop, we expect to receive

xw(x, n − 1) +
∫ 1

x

w(t, n− 1)dt = (n− 2)xn−1 + 1.

The one-stage look-ahead rule stops if the former is greater than the latter, namely if
xn−1 ≥ 1/2. Clearly the problem is monotone and hence this rule is optimal.

14



Theorem 7. In the full information best-choice duration problem with recall, it is optimal
to stop n stages from the end if the largest of the values observed is at least xn = 2−1/(n−1).

Asymptotically, we have xn � 1− log(2)/n.
3.3 The Discounted Problem.

Consider the full-information duration problem with recall and with infinite horizon
in which future payoffs are discounted by an amount β per period, where 0 < β < 1. The
payoff now depends on time from the beginning rather than on time to go. The objects,
in order of observation, have values X1,X2, · · ·, assumed to be independent uniform (0,1)
random variables. Let Mn = max{X1, · · · ,Xn} for n = 1, 2, · · ·. The conditional expected
return for selecting the best object at stage n, given that Mn = x is

yn(x) = (1 − β)βn[1 + xβ[1 + xβ[1 + · · ·]]] = (1− β)βn/(1 − xβ).

This is a stopping rule problem with observations {Xn} and with payoff for stopping
at n equal to Yn = yn(Mn). Since E supn Yn is finite (in fact, yn(x) ≤ 1), the rule given
by the principle of optimality is optimal. This rule is

N∗ = min{n ≥ 1 : Yn ≥ ess supN>0E{YN |X1, · · · ,Xn}}.

There is a time invariance for this problem that makes it easy to solve. If V(x) denotes
the optimal expected payoff for the problem modified so that stopping at a value less than
x is prohibited, then for n ≥ 1, ess supN≥nE{YN |X1, · · · ,Xn} = βnV (Mn) a.s.. With this
and the formula for yn substituted into the inequality in the expression for N∗, we deduce
the inequality (1− β)/(1− βXn) ≥ V (Xn). Since the left side is increasing in Xn and the
right side is nonincreasing in Xn, there is a unique root, y, so the rule N∗ may be found
among rules of the form

Ny = min{n ≥ 1 : Xn ≥ y}.
We have only to evaluate the expected return for such rules, and find the value of y that
gives the maximum expected return. Given Ny = n, the conditional distribution of Xn is
uniform on (y,1). Hence,

EYNy = EβNy(1 − β)/(1 −XNy) = E
βNy

1− y

∫ 1

y

1− β

1− xβ
dx =

(1− β)
(1− y)β

log(
1− yβ

1− y
)EβNy .

Since Ny has a geometric distribution, EβNy is easily computed to be (1 − y)β/(1 − yβ).
Hence,

(3.15) EYNy =
1− β

1− yβ
log(

1 − yβ

1− β
).

The optimal choice of y is the value of y ≥ 0 that maximizes this. Taking a derivative with
respect to y and setting to zero gives log((1 − yβ)/(1− β)) = 1, or equivalently,

y =
1− e(1 − β)

β
.
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If this is negative, then (3.15) is a decreasing function of y and the optimal value of y is
zero.

Theorem 8. The optimal rule for the discounted full-information duration problem with
recall is Ny, where

y =
(
1− e(1 − β)

β

)+

.

In particular, if β ≤ 1−1/e = .63212 · · ·, it is optimal to select the first object. The optimal
payoff is equal to 1/e for all β ≥ 1− 1/e.

This is exactly the rule discovered by Porosiński to be optimal in the full-information
best-choice problem with a random number of objects having a geometric distribution with
probability β. As he points out, this rule is even simpler than the Gilbert-Mosteller rule
when the number of objects is known.

Without Recall. Theorem 8 holds for the full-information duration problem without
recall as well. The optimal rule never recalls a previously discarded observation. So if it is
best when one is allowed to recall, it is best also within the smaller class of rules for which
recall is not allowed.

4. Random Arrival Models.

We assume that objects appear at random times given by a Poisson process on [0, T ]
at rate λ > 0. We look briefly at the problem of selecting a relatively best object with
the view of maximizing the duration that it remains relatively best. Here, duration is
measured in “real” time, not just in the number of arrivals.

4.1 The No-Information Case.

The no-information best-choice random arrival problem has been studied by Cowan
and Zabczyk (1978). They have shown that it is optimal to select the mth object to arrive
provided it is relatively best and its arrival time t satisfies λ(T − t) ≤ xm, where xm is the
unique solution of the equation,

∞∑
j=0

xj

j!(m+ j)

(
1−

j∑
k=1

1
k +m− 1

)
= 0.

The direct extension of their result to the duration problem is rather difficult. Instead,
we treat the model of Bruss (1987) where λ is allowed to be unknown and is assigned a
prior exponential distribution, a exp{−aλ} I(λ > 0) where a > 0 is a known parameter.
As is shown in Bruss, the conditional distribution of the number of arrivals in [t, s] for
s > t given the history, Ft, to time t is negative binomial:

P{j arrivals in [t, s]|Ft} = P (j|t, s, k) = (j + k)!
j! k!

( s− t

s + a

)j( a+ t

a + s

)k+1

for j = 0, 1, . . .
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where k represents the number of arrivals in [0, t]. From this, one can deduce the probability
of no new records in [t, s] given k arrivals in [0, t] to be

(4.1) P{no records in [t, s]|Ft} =
∞∑

j=0

P (j|t, s, k) k

k + j
=

a+ t

a + s
.

The remarkable feature of this probability is that it is independent of k. An investigation
of other arrival processes that share this feature with the Poisson-exponential model has
been carried out by Bruss and Rogers (1990). Using this, we may derive the optimal rule.

Theorem 9. In the no-information duration poblem with random arrivals on [0, T ] follow-
ing a Poisson process at rate λ > 0 having an exponential distribution with rate parameter
a, it is optimal to select a relatively best object that appears at time t if

(4.2)
t+ a

T + a
≥ e−2.

Proof. Let S denote the time of the appearance of the first record after time t, and
let F (s|a, t) denote its distribution function, F (s|a, t) = (s − t)/(a + s) from (4.1). If a
relatively best object appears at time t and we select it, we expect to receive

(4.3)
E(S − t) =

∫ T

t

(s − t)dF (s|a, t) + (T − t)(1 − F (T |a, t))

= (a + t) log
(a+ T

a+ t

)
.

If, instead, we reject it and then select the next relatively best object to appear, we expect
to receive ∫ T

t

(a + s) log
(a+ T

a + s

)
dF (s|a, t) = a+ t

2
[log

(a+ T

a+ t

)
]2.

The one-stage look-ahead rule has us stop if the former is at least as great as the latter,
which reduces to the condition in the statement of the theorem, From this one sees that
the problem is monotone with bounded payoff, so this rule is optimal.

It is interesting to observe the behavior of the expected payoff of the optimal rule. Let
t(a) denote the time at which it is optimal to select the next relatively best object, and
let v(a) denote the corresponding optimal return. Then from the theorem we find that:
If a ≤ 1/(e2 + 1) = .1565 · · ·, then t(a) = T e−2 − a(1 − e−2) and v(a) = 2e−2(T + a).
If a ≥ 1/(e2 + 1), then t(a) = 0 and v(a) = (a/2) log((a + T )/a).

For a close to zero (large arrival rate), the optimal return is close to 2e−2T , the limiting
optimal value for the finite horizon duration problem of section 3. As a increases, the
optimal return increases to a maximum of about .406T at a/T = 0.255 · · ·, (the root of
log((a + T )/a) = T/(a + T ), and then decreases to zero as a → ∞. At the point of
maximum return, it is optimal to select the first arrival.
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With Recall. The no information random arrival model treated above has an even simpler
solution if recall is permitted. We assume that one is allowed to stop at any time and select
any of the past observations. The expected payoff for stopping at t is just (4.3). The value
of t that minimizes (4.3) is easily found to satisfy

a+ t

a+ T
= e−1.

That this is the optimal rule follows as in the proof of Theorem 9 by discretizing time,
finding the 1-stage look-ahead rule and passing to the limit. Alternatively, one may show
that this is the infinitesimal look-ahead rule and apply the theory of Ross (1971). Thus
the optimal rule for this problem is a fixed-time stopping rule.

4.2 The Full Information Case.

We assume that the objects arrive at the times of a Poisson process with known rate
λ. Associated with each object is its value; the values are assumed to be i.i.d. uniform
[0, 1], independent of the arrival times. Otherwise, the problem is as before.

The best-choice version of this problem has been solved independently by Sakaguchi
(1976) and Bodjecki (1978). In these papers it is shown that it is optimal to select a
relatively best object of value x with time t remaining if x ≥ 1− z

λt
, where z = .80435 · · ·

satisfies ∫ z

0

1
t
(et − 1)dt = 1.

This is the one-stage look-ahead rule and the problem is monotone. This result extends
easily to the duration problem.

Theorem 10. In the full information duration poblem with random arrivals following a
Poisson process at rate λ > 0, it is optimal to select a relatively best object of value x that
appears with time t to go, if

x ≥ 1− z

λt
,

where z = 2.11982 · · · satisfies (3.8).
Proof. We show that this rule is the 1-stage look- ahead rule and the problem is mono-
tone, and since the loss is bounded this rule is optimal. As Sakaguchi shows, the probability
of no records in time t given that the present maximum value is x is

∞∑
j=0

xje−λt(λt)j/j! = e−λt(1−x),

so that the distribution of the arrival time of the next record, given the present maximum
is x, is exponential at rate λ(1 − x). If we select a relatively best object of value x with
time t remaining, our expected return is

(4.4)
w(x, t) =

∫ t

0

sλ(1 − x)e−λ(1−x)s ds+ te−λ(1−x)t

=
∫ t

0

e−λ(1−x)s ds
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If, instead, we continue and select the next relatively best object to appear, we expect to
win

v(x, t) =
∫ t

0

λ(1− x)e−λ(1−x)s

∫ 1

x

1
1− x

w(y, t − s)dy ds

= λ

∫ t

0

e−λ(1−x)s

∫ t−s

0

∫ 1

x

e−λ(1−y)r dr dy ds

=
∫ t

0

e−λ(1−x)s

∫ λ(1−x)(t−s)

0

1
u
(1− e−u)du ds

=
e−z(x,t)

λ(1 − x)

∫ z(x,t)

0

ev

∫ v

0

1
u
(1− e−u)du dv,

where z(x, t) = λ(1 − x)t. The one-stage look-ahead rule requires stopping if w(x, t) ≥
v(x, t), or equivalently, if

(4.5)
∫ z(x,t)

0

ev[1−
∫ v

0

1
u
(1− e−u)du] dv ≥ 0.

This reduces to the rule stated in the theorem. To see that the problem is monotone, note
that the left side of (4.5) is increasing in z if

∫ z

0
(1− e−u)/u du ≤ 1, that is if z > 1.345 · · ·,

and decreasing in z thereafter. Since z(x, t) is decreasing as time to go decreases or as x
increases, once (4.5) becomes satisfied, it stays satisfied. Thus the problem is monotone
and the proof is complete.

With Recall. Suppose that recall of past observations is allowed. We may stop at any
time and when we stop we select the best of the objects observed. If we stop at time t with
an object of value x, we receive w(x,t) of (4.4). If we continue for an additional length of
time ∆t and then stop, we expect to receive, to first order terms,

exp{−λ(1− x)∆t}w(x, t +∆t) + (1− exp{−λ(1− x)∆t})
∫ 1

x

w(y, t +∆t)dy/(1− x)

The ∆t-look-ahead rule stops at t if this quantity is less than w(x, t). After dividing the
resulting inequality by ∆t and passing to the limit, we obtain the differential equation,

λ(1 − x)w(x, t) − ∂

∂t
w(x, t) ≥ λ

∫ 1

x

w(y, t)dy.

Replacing w(x,t) by its value from (4.4) and changing the variable y in the integral to
u = λt(1− y), we obtain the infinitesimal look-ahead rule in the form: Stop as soon as the
time to go, t, and the present observed maximum, x satisfy the inequality

(4.6)
∫ λt(1−x)

0

1− e−u

u
du ≤ 1.

Since the left side decreases as x increases and as t decreases, the problem is monotone
and this is the optimal rule. It stops as soon as λt(1− x) ≤ .80435 · · ·.
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This is exactly the same inequality that describes the solution to the Sakaguchi-
Bodjecki problem. However, the actual stopping rules differ. In the Sakaguchi-Bodjecki
problem, stopping only occurs at the arrival of a relatively-best object. Here stopping can
occur as t decreases to satisfy (4.6) with equality.
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