BAYESIAN DENSITY ESTIMATION 1
BY MIXTURES OF NORMAL DISTRIBUTIONS

Thomas S. Ferguson

Department of Mathematics
University of California
Los Angeles, California

I. INTRODUCTION

This paper is concerned with the estimation of an arbitrary
density f(x) on the real line. We model this density as a
mixture of a countable number of normal distributions in the

form

f(x) = I, .‘pl.h(xlui,ci), (1)

where h(x |u,a) is the density of N(u,cz), the normal distribution
with mean y and variance 52. There are a countably infinite
number of parameters of the model, (pl,pz,...,ul,uz,...,dl,c2,
...}. Using such mixtures, any distribution on the real line

can be approximated to within any preassigned accuracy in the

Lévy metric, and any density on the real line can be approximated

similarly in the L, norm. Thus the problem may be considered

1L
‘nonparametric.

Let Xyreeo s X represent a sample of size n from f(x).
Consider the problem of estimating f(x) at some fixed x or of

estimating some functional of f£(x) such as the mean, [xf(x)dx,
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using squared error loss based on x X We consider a

170
Bayesian approach to this problem. This entails placing a joint
distribution on the parameters of the model and attempting to
evaluate the posterior expectation of f(x) or [xf(x)dx given the
sample.

There are several advantages of such an approach. 1. Use of
prior information. It gives the statistician a formal method of
combining some of his prior information with the data. 2.
Consistency. The argument of Doob (1948) shows that these
estimates should be consistent for almost all f chosen by the
prior. However, a direct consistency result seems difficult to
obtain and rates of convergence look even more difficult, even
though direct consistency and rates of convergence are easy to
obtain for other methods of density estimation such as kernel
estimation. 3. Automatic adaptation. Asymptotic theory for
kernel estimators involves problems of letting the window size
tend to zero at some rate as the sample size tends to infinity.
Such problems are automatically taken care of in the Bayesian
framework. 1In particular, larger windows for more remote
observations are seen to occur naturally. 4. Small sample
optimality. Classical methods have only a large sample justifi-
cation and look rather ad hoc if the sample is small. However,
Bayes estimates with sguared error loss are generally admissible.

We are not interested in estimating the parameters of the
It would not make much

110,reee
sense to do so since the parameters are not identifiable. One

model, Py iPyreessll sl s

Tay attempt to obtain identifiability by writing (1) in the form
f(x) = [h(x |u a)dG(u,q) (2)
r

where G is the probability measure on the half-plane
{(u,¢): a>0} that gives mass p; to the point (ui,gi), 12152 sase

It has been shown by Teicher (1960) that if G is restricted to
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the class of finite probability measures, then G is identifiable,
but that if G is unrestricted then G is not identifiable. The
identifiability of G when G is restricted to the class of

countable probability measures is still an open guestion.

II. THE PRICR

We describe the prior distribution of

(pl,pz,..-,ul,uz,...,cl,cz,...) as follows:
.. rFeecey r Fee- i t.
(a) (pl,pz, ) and {ul,u2 0,+0, ) are independen
(b) Let dyeQyreee be i:d,d. q; having the beta distribution,

Be(M,1l) (i.e. the common density of the q; is MqM I[O l](q) Iy

j—1
and let p, = l—ql, p, = ql(l_q2)""'pj = (Hi=lqi)(1~qj),...

(c) (ul,dl), (uz,oz),... are i.i.d. with common distribution
the usual gamma-normal conjugate prior for the two-parameter
normal distribution, namely, the precision (reciprocal of
variance) p; = l/ci has the gamma distribution G(w,2/f) (i.e.

the density of p, is [l/P(a)](B/2)ae—p6/2pd_ll (p) and given

(0,=)
pi,ui is distributed as the normal distribution with mean p and

precision piT'

There are five parameters of the prior, M>0, o>0, B>0, u,
and 1>0. Note that the distribution of (pl,p2,...) depends only

on M, and that the distribution of (ul,cl,uz,c .) depends only

gre-
on o, B, ¢ and T.
' The prior guess at £(x), denoted by fo(x), is the expectation

of#f (x) under the prior distribution.

£,(x) = E£(x) = 1.Ep, Eh(x|u;,0,) = Eh(x|u,0)
- (0ts)
_ T (a+ks) J T T .2
" T (o)T (%) (T+1) B a+ (T+1)B (x=1) ")
With the change of variable y = —EEI——-(x—u) y has a t-
(t+1) 8 !

distribution with 20 degrees of freedom (in the generalized
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sense since o need not be rational ). The mean of fo(x) is u
and the variance is (t+1)8/ (21 (a+l)). Thus the prior distribu-
tion does not admit a prior guess that is not symmetric. A more
general prior guess may be achieved through the use of mixtures,
but the resulting formulas become more complicated and are not

investigated in this paper.

Interpretation of M. There are two somewhat independent
interpretations of M. The first concerns the relative sizes of
the probabilities, p;- A small value of M means there is a big
difference in the P, generally, P, is large compared to P,:p,
is large compared to Pyrees etc. If M is large, there will be
many small probabilities that tail off to zero slowly. As an
aid to understanding this feature of M, Table I has been
constructed which shows the expected values, standard deviations
and the correlation of the two largest p,-

The other interpretation of M is as prior information. A
small M means that you don't trust your prior guess much (the
estimate will be strongly influenced by the observations), and a
large value of M means you do trust your prior guess (the esti-
mate does not depend much on the observations.) 1In this regard,
M is measured in units of sample size: M represents the number
of observations for which you would be willing to trade your
prior information,

Thus it appears that this prior cannot express the opinions
of a persons who believes strongly that there is a big difference
in the probabilities P We will see below in (6) an estimate
of £(x) in which the influence of M as prior information is at

least partially removed.

Choice of prior parameters. The following considerations are
an aid to choosing the parameters of the prior to express the
opinions of the statistician.

Since Eui = U, U should be chosen as the statistician's

prior guess at the center of mass. Since Var M, o= Ec?/r, T
i
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should be chosen approximately as ch/Var M;+ If the uncertainty
in the values of the ui is greater than (equal to, less than)

the average variance, then 1 should be chosen less than (equal
to, greater than) 1.

Since Epi = 2a/B (or Eci = B/2(a-1) for a>l), choose
2a/B%Epi, leaving one parameter, say R, to be chosen in a way that
reflects how diffuse the p, are thought to be. Since
var pi = 4&/82, choose B large if the pi are expected to be2
close to 20/R and choose R small if the Py and hence the O
are expected to be diffuse.

One should choose M to reflect the statistician's belief on
the relative sizes of the probabilities. TFor this, moderate
values of M, from .5 to 5 say, are appropriate; Table I will aid

this choice.

TABLE I. Expectations, Standard Deviations and Corre-
lation of the two Largest Probabilities for
Various Values of M, based on 10,000 Monte
Carlo Trials

M EPI EP2 s.d.PI1 s.d.P2 Corr.
ol . 938 .058 .124 115 -.984
.2 .881 SE0L .158 .134 -.961
. .756 172 .192 .137 -.890
1 .625 210 .192 «112 -.758
2 .476 .213 .164 .080 -.487
5 .296 -« 170 .106 .049 -.031
10 .195 .125 .070 .032 .238

20 .122 .085 .040 020 .383
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III. CONNECTION WITH THE DIRICHLET PROCESS

The prior distribution of the parameters (pl,pz,...,ul,uz,...,
01,02,...) has been chosen so that the distribution function, g,
of (2) is a Dirichlet Process with parameter g = MGO, where

g = EG is the conjugate prior for (u,02) for the normal distri-
bution given in (c) of Section II. That this is so follows

from the representation of the Dirichlet process given by
Sethuraman and Tiwari (1981). Their representation of the

Dirichlet process, G, with parameter MGO is of the form

==]

8

8= Zyp,by
1

where (pl,pz,...) and (el,ez,...) are independent, the distri-

bution of the p, as in (b) of Section II, and # are i.i.d.

1’82""
G.. (The following discussion is quite general; for the specific

cgse introduced in Section II, ei represents (ui,ci), i=1,... .)
This is similar to but simpler than the representation in
Ferguson (1973) which describes the distribution of the p, by
their order statistics P 1y z_p(2) 2 +++ . The actual distri-
bution of p(l) is difficult to exhibit and even Ep(l) seems
difficult to obtain, as pointed out by J.F.C. Kingman (1975).
However the representation of Sethuraman and Tiwari makes it

easy to evaluate Ep Ep{z),... etc. by Monte Carlo. The

results of such a c;i;utation are found in Table T.
) If GelD(a) with o = MGy, and if Xl,...,Xn is a sample from a
distribution with density f(x) = fh(x[G)dG(e), then the posterior
%igdistribution of G given Xl,...,xn has been found by Antoniak

(1974) to be a mixture of Dirichlet processes
n
G Y i i Feeay, .
[%., ) fD(a+ZlGGi)dH(Gl, 0 lx) x ) (3)
One may consider the observationsg Xl,...,xn to be chosen by first

choosing 81,...,8n i.i.d. from G(8), and then Xi from h(xfBiJ

I=Lyawnsh independently. With this interpretation
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H(6,,...,0 |x yseeX_) 1s the posterior distribution of
1 n'"1 n
81,...,8n given xl,...,xn. Using (3), the posterior expectation

of G(8) given xl,...,xn may be written as follows. ILet

~ l.n
l,...,en, Gn = nzl ei.

G
ol

denote the empirical distribution of 6

Then, since the expectation of D(a+2266 ) is (MGO+n an)/(M+n),
i

Ei0]x,.ux ) = Egﬁ G, (8) + E§E~f...f&n(e)dg(el,...,enl
Yl,---an) (4)
and
£o(x) = E(E(x)|x,,0niix ) = 2 £ (x) + 22— F (x) (5)
1 n M+n 0 M+n n
where
E(x) = %—z? PooelBlx |0 )AHE, yueesb %) eeerix ). (6)

The estimate (6) may be considered as a partially Bayesian
estimate of f£(x) with the influence of the prior guess at f(x)
removed.

This approach to density estimation including the special
case of normal-gamma shape for GO, has been treated by Lo (1978).
Lo has found the following useful representation of the function

H.

n n i=l
(th(xi|ei))Hiild(MGO+Ej=léei)(Bi)
(n)

dH(Bl,...,Bn xl,...,xn) =
M h(xl,...,xn)
(7)

where

' n n
*f(xl,...,xn) = f...f(Hi=lh(xilSi))Hi=ld(MGG
' i-1 (n)

+ ijléej) (Bi)/M .

(8)

With this notation we may write (5) as

E(E(x) |3y ,-0x ) = BOX Xy rene X ) /DX eee X ) (9)
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The two extreme cases of these estimates as M+ 0 and M + =
are worth noting. As M -+ 0, it becomes more and more likely

that all the @i are equal, resulting in the estimate

Sh(x| e)n’l’h(xile)dao (8)
lim E(f(x)‘xl,...,xn) = = . (10)
M0 /miacx, | 8)dG, (8)

This is the parametric estimate of f£(x) when 6 is chosen from
Go(e) and xl,...,xn are chosen i.i.d. from h(xf@). As M =+ o,
the estimate (5) converges to fo(x) which is not very useful.
However, the estimate (6) which is less dependent on M as a
measure of prior information also converges. Since as M -
it becomes more and more likely that all Gi are distinct,
lin £_(x) = % f(x|x,), (11)
Moo

where
f(xlxi) = fh(xle)h(xilBJdGO(B)/fb(xi|e)dGU(6)

is the Bayes estimate of the density h(xfe) based on a single
observation, xi, from h(x|6) when 6 has prior distribution
GO(G). This is a variable kernel estimate.
If the density h(x[e) were N(G,TZ) with known T2, and
if 8 were N(u,oz) with known 1 and 62, then f(x]xi) is
Tﬁ+02xi 2 2

+20
N T

A 2 2 STy
T +0 T7+o

This yields a variable kernel estimate with constant window
size, but centered at a point between xi and y, as is typical of
shrinkage estimates.

For the problem treated in this paper, 6 represents (u,c2).
which has a normal-gamma prior, while h(x]e) is N(u,cz). In this

case, f(xlx.) is the density of a t -distribution centered at
i 20+l

[
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TU+X, ” 5 i
Pl with scale ((1t+2) (R+ '?-_FI(XJ'_—U) )Y/ ((2a+1) (t+1))) “.

In addition to the shrinkage phenomenon, the window size depends
on the observations with larger windows for observations X,
farther from p. Unfortunately, one has lost, through this
interchange of limits as M + = and n + », the valuable Bayesian
property of not having to worry about the window size as a
function of n. However, one may hope to let o and 1 depend on n,
a + = and T + 0, to obtain good asymptotic properties of the

estimate (11).
Iv. COMPUTATIONS

Since computation of E(f(x)|xl,...,xn) depends on computing
the ratio (9), let us concentrate on the denominator,
h(xl,...,xn). For this we use the analogue of a Monte Carlo
technigque of Kuo (1980) developed for a Bayesian approach to
the empirical Bayes decision problem.

First, we expand the product measure in Lo's representation.

n i-1 (n)
Hi=1 (MGO+ZJ.:1 Sej) (dei) /M

_ M 1

= Go(del)(ﬁiico(dez) + ﬁli6el(dez))"' (12)
(—M—G ds + L{S das )+ +—}——6 de
M+N-1 0( n) M+n-1 81( n) "t M+n-1 en—l( n))'

When the product is expanded, there are n! terms, but some of
them are equal. For example, a term that begins

Go(dBl)Sel(daz)ﬁez(dB3)... is the same as a term that begins

Go(del)ée (dez)ﬁe (dBB)...; in both, 6, = 82 = 83. Each term of

1 1 .
the expansion determines a partition,

{k ""'Km}' of

]
[es]

{xl,...,xn} with the property that 6 in the term if and

L
only if Xy and xj are in the same set K € Q. Thus,
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b(xl....,xn) = é PM(Q)Z(Q) (13)

where PM(Q) represents the probability that partition Q is
selected, and

Z¢@) = 0 [ T h(xi|6)dG0(9). (14)

KeQ xieK

The Monte Carlo technique of Kuo entails sampling partitions, Q,
at random according to PM(Q), and evaluating Z(Q). This is
repeated N times with partitions Ql""'QN' and the average
Z@ =1,

1
h(xl,...,xn).

Z(Qi)/N is taken as the Monte Carlo estimate of

As the computations are being carried out, one may cobtain an
estimate of the standard error of the Monte Carlo estimate.

namely

—_— 2
(Z_ivfzfQi) - 2(Q) )) /{N(N—l)}li_

Though useful in most situations, it should be realized that this
can be very misleading as an estimate of error, since typical
situations arise in which the true variance is very larye due
to a few values of Z(Q) that are very large and have small
probabilities of appearing in the sample. Error reduction
technigues are discussed in the next section.

Kuo's method of choosing Q is as follows. Take any ordering

of the X, - Start a set of the partition with x For

1°
k=1,... n-1, repeat the following operations: Let X start a

new set of the partition with probability M/ (M+k); otherwise,

with probability 1/(M+k) each, put x into the set containing

k+1
X;. for i=1,...k.
wil‘

To adapt this method to compute the estimate, (6), we
randomly choose a partition Q in this manner, and in addition to
computing the value of the denominator, Z(Q), we also compute the

value of the numerator, call if Y(Q), namely,
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i
Ix| If(x]e)kf(xile)dGo(B)

Y(Q) = z(Q) I i Hf(xilﬁ)dGofe)
K

KeQ

The Monte Carlo estimate of %(x) is then
LY(Qi)/Ez(Qi)

and its standard error can be estimated using the usual asymp-

formula for the variance of a ratio of means,

2
H H
—_— T 2 2
Var (Y/z) "~ ——E-(c -20 2 + C —59.
y yzu z 2
nuz z ”

To test the computational method, a specific case with n = 5
was chosen so that exact expectations could be made for compari-
son. The observed values are taken to be x. = L0, ®

1 2
i = 2.3, and Xg = 2.6. sSimple values of the para-

= L.L;
x3 =1.9, x
meters were chosen and a small Monte Carlo of size N = 10 was
carried out. The results are found in Table II. The estimates
seem very good for so small a value of N, but with a larger value

of n it is expected that a larger value of N is also needed.

TABLE II. Density Estimate with Prior Parameters M = 1
o=1, =1, u=2, and T = .5, and with
Observations 1, 1.1, 1.9, 2.3, and 2.6. Based
on a Monte Carlo of size N = 10

r

Prior Estimated
guess Esgimated Estimated st. err. Exact
X fo(x) fn(x) fn(x) fn(x) fn(x)
0 .081 .055 .059 .002 .053
‘ 5 .125 .128 .128 .005 .127
da 1,0 .188 .272 .258 011 <270
L5255 .256 .434 .404 .009 .432
2.0 .289 .457 .429 .015 .467
2.8 .256 315 .306 .009 .329
3.0 .188 w59 163 .003 .159
3.5 .125 .069 .078 .003 .065
4.0 .081 .030 .039 .002 .027
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Consider now an example that illustrates the way one goes
about choosing the parameters to express prior beliefs or fit
data. Taking the five data points of the previous example,
suppose we expect one main peak and one smaller local maximum,
the rest being quite small in comparison; then we choose M = 1
or M = 2 for definiteness. We expect the center of mass to be
around 2 so we choose u = 2, (If we use data-aided choice we
might choose p = x = 1.8). We might set the standard deviation
of the My at (2.3 - 1.1)/2 = .6, and if we expect the o5 to
range from near 0 to .5 we might set Eci = .06 giving a ratio of
T=.12/.36 =1/3, so 1= .1 or T =.5might do. We choose a
small value of B, say B = .5, and solve Eci = B/(20-1) giving an
a close to 5. Table III contains the exact values of the
estimate (6) of the density for certain parameter values close
to these, the first column being the cne of choice. The density
estimate is seen to have one large peak close to 2.25 and a
smaller one close to 1.25.

TABLE III. Exact Values of the Estimate (6) for the Data

Points 1, 1.1, 1.9, 2.3, 2.6. Parameter values
M=1, u=2

a =5 a =5 a =1

B =.5 B = .1 B = .1
x T=.5 T=.1 1=.5 T=.1 T=.5 T=.1
0 .002 .003 0 0 .022 .015
.25 .010 .013 .002 0 .042 .032
.50 .039 063 .013 .005 .082 .082
.75 .136 .238 .085 .103 .160 .220
W, o, 1.00 .337 512 .374 .824 .282 .460
1:25 .509 .511 .663 .604 .400 .477
1.50 .488 .316 .394 069 .452 .342
1.75 .464 .309 . 307 e .511 .362
2.00 607 .498 .671 .537 .619 .496
2.25 .694 .659 .831 .623 .614 .597
2.50 .475 .538 .575 776 .418 . 504
275 .181 . 247 .074 .163 .198 .241
3.00 046 .072 .005 .010 .085 .088
3.25 .010 016 L.001 .001 .039 .034
3.50 .002 .003 0 0 .019 .015

3.75 0 .001 0 0 .010 . 007
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V. IMPROVING THE MONTE CARLO .

In some situations, it is possible to change the Monte Carlo
sampling method to reduce the variance of the estimate. See
Rubenstein (1981) for a review of such methods. In the problems
treated here, there may be a partition Q with a large value of
Z(Q) and a small value of PM(Q) that is rarely chosen in the
Monte Carlo sampling even though it contributes significantly
to the expectation. As an example, suppose there are 3 Q's
with probabilities .01, .50, and .49 and values of z(Q) loo00, 2,
1, respectively. The true mean is h = .01 (1000) + .50 (2) + .49
(1) = 11.49. wWith a Monte Carlo of size N = 10, there is a large
variance; if the sample contains the value 1000, the estimate is
greater than 100, and if it doesn't, the estimate is at most 2
If it is known which Zz(Q) are expected to be large, one may change
the probabilities and values; for example, we may write

.0l .5 .49
85 1000) + .10 (.1 2) + .05 (.05 1)

.85 (11.76) + .10 (10) + .05 (9.8)

il

h .85 (

1l
1l

11.49 .

The Monte Carlo of size N = 10, on values 11.76, 10, 9.8 with
probabilities .85, .10, .05 respectively has a small variance.

The problem is to tell which Z(Q) are likely to be large and
by how much. It is useful to consider two separate sources of
variation in the Z(Q): the number of sets in the partition,
and their within set variation.

‘Often the number of sets in the partition significantly
abfects z(Q), the larger the number of sets the smaller the z(Q) .
In the example with n = 5 observations, 1, 1.1, 1.9, 2,3, and 2.6,
and paramter values M =1, oo = 1, B = I, u=0, and T = 1, Z(Q)
goes down roughly as .5m where m = |Ql. In the more reasonable
case that u = 2, it goes down roughly as 8 This being so, we

can improve the Monte Carlo as follows. Choose the partition
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using Kuo's method but using a different value of M say M';
afte: Z2(Q) has been evaluated multiply it by (M/M‘)mM'(n)/M(n)
where m = ]Q]. In the cases mentioned M'/M should be chosen
roughly as .5 or .8.

For a fixed number of sets in the partition, the value of
Z2(Q) is largest if the sets contain contiguous order statistics
so that the within set variation is small. 1In the method of
Kuo, the distribution of the assignment of the X, to the sets
of the partition is invariant under interchange of subscripts.
Needed is a method of choosing "clumpy" partitions in which
xi's that are close in value have a higher Probability of being
in the same set. Here is one possibility involving rank-
dependent grouping.

Order the xi‘s, %) < Xy <...< xn, choose a value of t 1,
and let xl start a set of the partition. For k=l,2,...,n—l,
repeat the following operation. Let X4 start a new set of the
partition with brobability M/ (M+k) . Otherwise, put X1 into
the already created set K with probability proportional to
L, ti. The ratio of the old probability of K to the new

1eK
probability is

k ¥
7t
ratio = XL 5
k 5 tl
i€k

Keep a running product of the ratios as you go along and multiply

Z2(Q) by this broduct when finished.

’ The old probabilities are those given by the method of Kuo
‘#which uses t = 1. one drawback of this method is that

Q = 1{1,2,3}, {4,5}} ana Q, = {{1,2}, {3,4,5}} have different

probabilities even though they are symmetric. One can avoid

this by randomizing with probability % ordering the X, in

ascending or descending order.

In some cases it may be preferable to use value~dependent

grouping, in which X1 is assigned to a set K with probability
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proportional to some function of the values of the observations

in K such as I, exp{—tlxi—x |} or

ek

x| expl-t,  (x-x )

It is easy to combine these two methods simultaneously

k+1
) /]Kl} for some t > 0.

changing M to M' and changing the probability of assignment
to the already created sets K. Both methods have been tried on
the 5-point data set used in the example with parameters similar
to those mentioned. 1In both cases, a small reduction in the

variance of the estimate (about 20%) was noted.
VIi. SUMMARY

The problem of nonparametric density estimation is considered
from a Bayesian viewpoint. The density is assumed to be a
countable mixture of normal distributions with arbitrary means
and variances, and a prior joint distribution is placed on the
mixing probabilities and the means and variances. The resulting
model is seen to be equivalent to Lo's model, and a method of
Kuo is adapted to carry out the computations. A simple example

is investigated to show the feasibility of the method.
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