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Chapter 1

Selection by Committee

Thomas S. Ferguson

ABSTRACT The many-player game of selling an asset, introduced by Sak-
aguchi and extended to monotone voting procedures by Yasuda, Nakagami
and Kurano, is reviewed. Conditions for a unique equilibrium among sta-
tionary threshold strategies are given for the independent, unanimous con-
sent case.

1.1 Introduction

Decision making by committee is an important aspect of the Bayesian view-
point of decision theory. Such problems are essentially game-theoretic in
nature. Here we consider the selection by a committee of a candidate for
a position. This is a game-theoretic version with many players of the well-
known problem of selling an asset, also called the house-hunting problem,
introduced by MacQueen and Miller [6], Derman and Sacks [3] and Chow
and Robbins [1].

A committee is charged with the duty of selecting a candidate for a
position. Each member of the committee has his/her own way of viewing
a candidate’s worth, which may be related or somewhat opposed to the
viewpoints of the other members. Candidates appear sequentially and are
voted on by the committee. A candidate once rejected cannot be recalled.
This is modelled as a multistage game with many players.

The study of this problem was initiated by Sakaguchi [7] for the 2-person
unanimous consent case, and extended to allow Poisson arrivals and more
than one selection in Sakaguchi [8, 9]. These ideas were extended to many
players with a majority rule in Kurano et al. [5], and then to arbitrary
voting rules (simple games) in Yasuda et al. [11]. Szajowski and Yasuda
[10] consider the problem when the payoffs are functions of a homogenious
Markov chain.

These papers are concerned mainly with the existence of an equilib-
rium. The question of multiple equilibria is not considered. The impression
is given that the equlibrium is unique. Surprisingly, this is not the case.

0AMS Subject Classifications. 60G40, 90 G 39, 90D45.
Key words. selling an asset game, monotone voting procedures, threshold strategies.
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Simple examples are given below showing that more than one subgame
perfect equilibrium may occur. After setting up the problem in Section 2,
two theorems are given. The first relates equilibrium payoffs with equilib-
rium strategies. The second gives necessary and sufficient conditions for an
equilibrium, based on equilibrium equations of Sakaguchi. In Section 4, a
theorem is presented giving general conditions under which there exists a
unique equilibrium among stationary threshold strategies for the indepen-
dent, unanimous consent case. Some surprising results for the exponential
distribution are contained in the last section.

1.2 The Problem

Let m denote the number of committee members, referred to below as
players, and let M denote the set of all players M = {1, . . . , m}. The
players sequentially observe i.i.d. m-dimensional vectors, X1, X2, . . . , from
a known distribution F (x) with finite second moments, E(|X|2) < ∞.
After each observation, the players vote on whether or not to stop and
accept the present observation or to continue observing. The players have
possibly differing costs of observation. Let c = (c1, . . . , cm) denote the m-
vector of costs, with Player i paying ci for each observation. If at stage n,
the players vote to accept the present observation, Xn = (X1n, . . . , Xmn),
then the payoff to Player i is Xin − nci for i = 1, . . . , m.

The voting decision is made according to the rules of a simple game.
A coalition is a subset of the players. Let C = {C : C ⊂ M} denote the
class of all coalitions. A simple game is defined by giving the characteristic
function, φ(C), which maps coalitions C ∈ C into the set {0, 1}. Coalitions
C for which φ(C) = 1 are called winning coalitions, and those for which
φ(C) = 0 are called losing coalitions. Let W = {C : φ(C) = 1} denote the
class of winning coalitions and L = {C : φ(C) = 0} denote the class of
losing coalitions. These are assumed to satisfy the properties, (1) M ∈ W,
(2) ∅ ∈ L and (3) monotonicity: T ⊂ S ∈ L implies T ∈ L; namely,
subsets of losing coalitions are losing. This implies that supersets of winning
coalitions are winning.

A strategy for each player is a voting rule at each stage based on all past
information. As in Sakaguchi, we restrict attention to stationary threshold
rules. For player i, such a rule is determined by a number ai, with the
understanding that at stage n player i votes to accept Xn if Xin > ai.

Given the vector of thresholds, (a1, . . . , am), and an observation, X =
(X1 , . . . , Xm), we denote the stopping set by A = Aa1,... ,am(X). This set
may be decomposed into a union of disjoint sets, one for each winning
coalition.
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A =
⋃

C∈W

[⋂
i∈C

{Xi ≥ ai}
]
∩

[ ⋂
i∈Cc

{Xi < ai}
]

(1.1)

Let Vi = Vi(a1, . . . , am) denote player i’s expected return from such a
joint strategy. If P (A) = P (A(X)) = 0, then play never stops and Vi(A) =
−∞ for all i. If P (A) > 0, we may compute Vi from the optimality equation,

Vi = −ci + E[XiI(A)] + Vi(1− P (A)),

where I(A) represents the indicator function of the set A. This may be
solved to find

Vi = (E[XiI(A)] − ci)/P (A) for i = 1, . . . , m. (1.2)

We analyze this as a noncooperative game. We assume that E|X|2 < ∞.
Under this assumption, for each player there is an optimal reply among all
stopping rules to any stationary strategy choices of the other players and
it may be chosen to be a stationary threshold rule. The weaker assumption
that E|X| < ∞ may be made but it requires a restriction that the jointly
chosen stopping rule be such that the expectation of negative parts of all the
returns be greater than −∞. With the stronger assumption, all stopping
rules are allowed, even rules that do not stop with probability one.

We seek Nash equilibria, that is, we seek vectors (a1, . . . , am) such that

Vi(a1, . . . , ai−1, ai, ai+1, . . . , am) = sup
a

Vi(a1, . . . , ai−1, a, ai+1, . . . , am)

(1.3)

for all i = 1, . . . , m. When m ≥ 2, there may be many equilibria with
the property that P (A) = 0 where all players receive −∞. (For example
when unanimity is required, if any two players refuse to stop, this is an
equilibrium no matter what the other players do.) This is the worst of all
possible equilibria, and it is not a (trembling hand) perfect equilibrium.
Since such equilibria are trivial and not interesting, we restrict attention
only to equilibria for which P (A) > 0.

1.3 The Equilibrium Equations

With a committee of a single person (m = 1), the problem is known as
the house-hunting problem or the problem of selling an asset, and has
been studied extensively. It is may be considered as a simple example of
the general theory of optimal stopping as treated in Chow, Robbins and
Siegmund [2] or Ferguson [4]. Several results from the theory of the house-
hunting problem carry over to the problem of decision by committee. The
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proofs of the following theorems use the same arguments as for the house-
hunting problem, but require the general theory.

Theorem 1.1. If a = (a1, . . . , am) is an equilibrium vector with finite equi-

librium payoff V = (V1, . . . , Vm), then V is an equilibrium vector with the same

equilibrium payoff.

We would like to say that in any equilibrium, a = V. But there may exist
an ε > 0 such that P (Vi − ε < Xi < Vi + ε) = 0 in which case, any ai in
the interval (Vi − ε, Vi + ε) gives the same equilibrium payoff vector. All we
can say is that we may choose ai equal to Vi.
Proof: Consider Player 1. With a2, . . . , am fixed, this is an optimal stop-
ping problem. The general theory (see Ferguson [4], Chapter 3 Section2,
and Chapter 4 Section 1) says that under the condition EX2

1 < ∞, an
optimal stopping rule exists (and is of the threshold type) and it is given
by the principle of optimality. Let V1 denote the optimal return for this
problem. The principle of optimality says that if you pay c1 and observe
X1 < V1 you may as well continue, since you can obtain V1 by continuing.
If you observe X1 > V1, you may as well stop since by continuing, the
best you can receive is V1. Thus, you may as well take a1 = V1. The same
argument works for the other players.

When P (A) > 0, the equilibrium equations determine the equilibria.

Theorem 1.2. At any equilibrium with P (A) > 0 and ai = Vi for i =

1, . . . , m, we have

E[(Xk − ak)I(A)] = ck for k = 1, . . . , m. (1.4)

Conversely, if P (A) > 0 and (1.4) is satisfied, then a is an equilibrium with

Vi = ai for all i. All such equilibria are sub-game perfect.

Proof. If P (A) > 0, then (1.4) follows by substituting Vi = ai in (1.2).
Conversely, suppose P (A) > 0 and (1.4) is satisfied, and consider Player k.
As in the proof of 1.1, the general theory says that an optimal threshold a∗

k

exists and is equal to the return Vk and so satisfies equation (1.4) when the
other ai for i �= k are fixed. We must show unicity of the solution. To do
this we show that the left side of (1.4) is continuous in ak with the other ai,
i �= k fixed, and strictly decreasing from∞ to 0 and possibly to −∞. In the
left side of (1.4), we substitute A of (1.1), and separate the summation over
W into three classes, those sets C that contain k and are losing without
k, those that contain k and are winning without k, and those that do not
contain k.
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E[(Xk − ak)I(A)] =
∑
C∈W
k∈C

C\{k}/∈W

E
[
(Xk − ak)

∏
i∈C

I(Xi > ai)
∏
i/∈C

I(Xi ≤ ai)
]

(1.5)

+
∑
C∈W
k/∈C

E
[
(Xk − ak)

∏
i∈C

I(Xi > ai)
∏
i/∈C
i�=k

I(Xi ≤ ai)
]
.

This follows since monotonicity implies that if C ∈ W and k /∈ C, then
C ∪ {k} ∈ W. The last summation is either zero (if k is in every winning
coalition) or linear in ak and strictly decreasing from +∞ to −∞. The next
to last summation is either zero (if k is a dummy, i.e. if the summation is
empty) or strictly decreasing from +∞ to 0. Not both summations can be
zero. It is also clear that this is continuous in ak. Thus for each k there
exists a unique solution for ak of equation (1.4) with the other ai, i �= k,
fixed.

The existence of equilibria for general simple games has been proved by
Yasuda et al. [11]. Here is an example to show that there may be more than
one equilibrium even if the Xi are independent. We take m = 2 and X1

and X2 independent, with X1 being uniform on the interval (0,1), and X2

taking the value 0 with probability 5/6 and the value 1 with probability
1/6. For both players the cost of observation is 1/8. The voting game is
taken to be unanimity; both players must agree on the candidate. There
are two perfect equilibria in threshold strategies. In the first, Player 2 votes
to accept every candidate, and Player 1 only votes for candidates such
that X1 > 1/2. The equilibrium payoff is (V1, V2) = (1/2,−1/12). In the
second equilibria, Player 1 votes to accept every candidate, and Player 2
only votes for candidates such that X2 = 1. This has equilibrium payoff
(V1, V2) = (−1/4, 1/4). Clearly Player 1 prefers the first equilibrium and
Player 2 the second.

The last section contains other examples with more than one equilibrium
in which the Xi are i.i.d. There are similar examples with many equilibria,
but in all of them the equilibrium vectors are noncomparable; that is to
say, if Player 1 prefers one of two equilibria, the Player 2 prefers the other.

1.4 Uniqueness of Equilibria in the Independent,
Unanimous Consent Case

We assume from here on that the Xi are independent, and that unanimous
consent is required to accept a candidate. We give a simple condition for
the existence of a unique equilibrium in threshold strategies. Under the
unanimous consent voting rule, the set A of (1.1) becomes simply
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A =
⋂

i∈M

{Xi > ai}, (1.6)

and in the independent case, the equilibrium conditions (1.4) become

E[(Xk − ak)|Xk > ak]P (A) = ck for k = 1, . . . , m. (1.7)

Definition 1.1. A random variableX is said to have strictly decreasing resid-

ual expectation if E[(X − a)|X > a] is a strictly decreasing function of a from ∞
when a = −∞, to 0 when a is equal to the right support point of X.

Without the word “strictly”, this is called “New better than used in
expectation”. Note that when X has decreasing residual expectation, then
X is a continuous random variable. This is because if X gives positive
mass to a point x0, then E[(X − a)|X > a] has a jump up at the point
x0. More generally, one can show that if X has decreasing conditional
expectation, then X has decreasing density on its support, and its support
is an interval (extending possibly to +∞ but not to −∞). In particular,
E((X − a)|X > a) is a continuous function of a on the support of X.

Theorem 1.3. In the unanimous consent case, if the Xi are independent and

have strictly decreasing residual expectation, then there exists a unique equilibrium

in threshold strategies.

Proof: From (1.7), all threshold equilibria must satisfy

1
ck

E(Xk − ak|Xk > ak) =
1

P (A)
for k = 1, . . . , m. (1.8)

In particular, this means that all E(Xk − ak|Xk > ak)/ck are equal. From
the hypothesis of strictly decreasing residual expectation, we may find for
each θ sufficiently large and each k = 1, . . . , m, a unique number ak(θ)
such that

1
ck

E(Xk − ak(θ)|Xk > ak(θ)) = θ.

As θ decreases, each ak(θ) increases strictly and continuously, until one or
perhaps several of the ak(θ) reach the upper bound of the support of Xk.
But as this occurs, P (A(θ)) decreases strictly and continuously to zero.
Therefore there exists a unique value θ0 such that θ0 = 1/P (A(θ0)).

1.5 The Exponential Case

The exponential distribution is on the boundary of the set of distributions
with decreasing residual expectation since the residual expectation is con-
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stant on the support. Suppose all the Xi have exponential distributions.
Since the utilities of the players are determined only up to location and
scale, we take without loss of generality all the distributions to have sup-
port (0,∞) and to have mean 1. Then

E(Xk − ak|Xk > ak) =
1 if ak ≥ 0,
1− ak if ak < 0.

Suppose without loss of generality that the ci are arranged in nondecreasing
order. If there is a unique smallest ci, that is if c1 < c2, then there is a
unique solution to equations (1.7), and it has the property that a2 through
an are negative. If c1 < 1, then a1 is determined from (1.7) by

1 =
c1

P (X1 > a1)
or a1 = log(1/c1)

and for i = 2, . . . , n,

1− ai =
ci

P (X1 > a1)
or ai = −(ci − c1)/c1.

In this equilibrium, we see a well-known phenomenon. In committee de-
cisions, the person who values time the least has a strong advantage. This
is the committee member who is most willing to sit and discuss at length
small details until the other members who have more useful ways of spend-
ing their time give in. In this example, Player 1 dominates the committee;
all the other members accept the first candidate that is satisfactory to
Player 1, who uses an optimal strategy as if the other players were not
there. In equilibrium, this committee has the structure of a dictatorship.

If c1 > 1 in this example, then all players accept the first candidate
to appear. This is agreeable to all committee members, who are using an
optimal strategy as if the other players were not there.

If all ck are equal and less than 1, any set of ai > 0 such that
∏n

i=1(1−
Fi(ai)) is equal to the common value of the ck is in equilibrium. We see
that without the condition that the distributions have strictly decreasing
residual expectation, there may be a continuum of equilibria.

The phenomenon of the player with the smallest cost dominating the
committee is not specific to the exponential distribution. If the Xi are
i.i.d. with non-decreasing residual expectation on its support, and if c1 <
min{c2, . . . , cm}, then there is an equilibrium with Player 1 using an opti-
mal strategy as if the other players were not there, and the other players
accepting any candidate agreeable to Player 1.

In the exponential case with c1 < min{c2, . . . , cm}, this equilibrium is
the unique perfect equilibrium. For other distributions with nondecreasing
residual expectation, this equilibrium may not be unique. Take for example
the inverse power law with density f(x) = αx−(α+1) on (1,∞) with α = 3
(so that EX = 3/2 and E(X2) < ∞). Suppose m = 2, c1 = 1/12, and
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c2 = 1/8. The equilibrium where Player 1 dominates has equilibrium payoff
(
√
6,−3

4
(2 −

√
6)) = (2.4495,−.3471). There is another equilibrium where

Player 2 dominates that has equilibrium payoff (5/6, 2).

References

[1] Y. S. Chow and H. Robbins. A martingale system theorem and ap-
plications. Proc. Fourth Berk. Symp. on Math. Statist. and Prob.,
1:93-104, 1961.

[2] Y. S. Chow, H. Robbins and D. Siegmund. Great Expectations: The
Theory of Optimal Stopping. Houghton Mifflin, Boston, 1971.

[3] C. Derman and J. Sacks. Replacement of periodically inspected equip-
ment (an optimal stopping rule). Naval Res. Log. Quart., 7:597-607,
1960.

[4] T. S. Ferguson. Optimal Stopping and Applications, electronic text.
http://www.math.ucla.edu/˜tom/Stopping/Contents.html, 2000.

[5] M. Kurano, M. Yasuda, and J. Nakagami. Multi-variate stopping
problem with a majority rule. J. Oper. Res. Soc. Jap., 23:205–223,
1980.

[6] J. MacQueen and R. G. Miller Jr. Optimal persistence policies. Oper.
Res., 8:362-380, 1960.

[7] M. Sakaguchi. Optimal stopping in sampling from a bivariate distri-
bution. J. Oper. Res. Soc. Jap., 16(1.3):186–200, 1973.

[8] M. Sakaguchi. A bilateral sequential game for sums of bivariate ran-
dom variables. J. Oper. Res. Soc. Jap., 21(1.4):486–507, 1978.

[9] M. Sakaguchi. When to stop: randomly appearing bivariate target
values. J. Oper. Res. Soc. Jap., 21:45–58, 1978.

[10] K. Szajowski and M. Yasuda. Voting procedure on stopping games
of Markov chain. In Shunji Osaki Anthony H. Christer and Lyn C.
Thomas, editors, UK-Japanese Research Workshop on Stochastic Mod-
elling in Innovative Manufecuring, July 21-22, 1995, volume 445 of
Lecture Notes in Economics and Mathematical Systems, pages 68–
80. Moller Centre, Churchill College, Univ. Cambridge, UK, Springer,
1996. Springer Lecture Notes in Economics and Mathematical Sys-
tems.

[11] M. Yasuda, J. Nakagami, and M. Kurano. Multi-variate stopping
problem with a monotone rule. J. Oper. Res. Soc. Jap., 25:334–350,
1982.


