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Graph games with an annihilation rule, as introduced by Conway, Fraenkel and 
Yesha, are studied under the midre play rule for progressively finite graphs that 
satisfy a condition on the reversibility of non-terminal Sprague-Grundy zeros to 
Spragu+Grundy ones. Two general theorems on the Spragu+Grundy zeros and 
ones are given, followed by two theorems characterizing the set of P-positions 
under certain additional conditions. Application is made to solving many 
subtraction games, and solutions to two games not covered by the general theory 
are presented indicating a direction for future research. 0 1984 Academic PICSS, Inc. 

1. INTRODUCTION 

This paper is concerned with games that are played on a directed graph, 
G, in the following manner. At the start of the game, a finite number of 
counters is placed on the vertices of the graph. A move consists of taking 
exactly one counter and moving it from its vertex along one of the directed 
edges to a new vertex. More than one counter may be at a vertex. Players 
alternate moves, and play continues until one of the players is unable to 
make a move because all counters are in terminal vertices of the graph, i.e., 
vertices from which no move is possible. If play continues forever, the game 
is declared a tie. If play stops, the player who moved last is declared the 
winner if the normal play rule is in force. Under the mis2re play rule, the 
player who moved last loses. 

Games of this sort in which the graph may have circuits or loops are 
called “loopy games” and have been studied by Fraenkel and Per1 [ 11, 
Fraenkel and Tassa [2], and Conway [3]. Some of the theory also appears 
in Chapter 11 of Conway’s book [4]. Such games are impartial in the sense 
that the moves available at any position do not depend on which player is to 
move. Partizan loopy graph games in which there are two graphs on the 
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same set of vertices, one graph for each player, have been studied by 
Flanigan [ 51. 

In this paper, we restrict attention to graphs that are progressively finite, 
that is, for every vertex v of G the game starting with a single counter on v 
must end in a finite number of moves. Games on such a graph are not loopy; 
there are no ties. In addition, we assume that the Sprague-Grundy function 
(SG-function) of the graph is finite. The SG-function, g, is defined on the 
vertices of the graph with values in the non-negative integers as follows. Call 
a vertex w, a follower of vertex v, if there is a directed edge from v to w, 
denoted by v + w. Then 

g(v) = min{ m E Z : m # g(w) for some follower w  of v } 

=mex{g(w): v-t w} 
(1) 

where mex stands for minimal excludant (see Conway [4]), For terminal 
vertices v, g(v) = 0 by this definition. Then this definition may be applied 
inductively to determine the SG-values of other vertices. 

A position in which there are n counters on vertices v, ,..., v,, duplication 
allowed, may be described by the multi-set x = {v, ,..., v,}. A P-position is 
one in which the previous player, the one who has just moved, can insure 
himself a win with optimal play. An N-position is one in which the player 
next to move can force a win with optimal play. Each position is either a P- 
position or an N-position. A game may be said to be solved if a simple 
description is given of the P-positions, one such that for a given position it 
can be determined in “polynomial time” whether or not the position is a P- 
position. 

As an example, the well-known game Nim has a graph G whose vertices 
are the non-negative integers and whose directed edges are from any integer 
to any lesser integer. Thus, in the graph game Nim, any counter may be 
moved from its vertex, n, to any vertex m provided m < n. The only terminal 
vertex is 0, and it is easy to see that the SG-function takes values g(n) = n 
for n = 0, 1, 2 ,.... 

The solution to this game was given by Bouton [6] in terms of the 
operation of binary addition of integers without carry, known as nim-sum. If 
r and s are non-negative integers with binary expansions r = Cr r,2’ and 
s = 27 s,2’ for some m, where each ri and si are 0 or 1, then the nim-sum of 
randsist=rIs,wheret=Crti2’andti=r,+simod2andt,=Oor 1. 
Nim-sum is associative and commutative since addition mod 2 is. Bouton’s 
characterization of the P-positions for Nim with the normal play rule has 
been generalized into the basic theorem of the subject of impartial games 
with normal play by Sprague [7] and Grundy [8]. This theorem states that 
for progressively finite graphs with finite SG-function g, a position 
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x= iv i,..., v,} is a P-position for normal play if, and only if, the nim-sum of 
the SG-values of the components is zero, that is, 

g(x) = g(vJ + * * - ? g(v,) = 0. (2) 

For misere play, the situation is much more complex. An excellent 
treatment of impartial games with midre play is found in Chapter 12 of 
Conway [4], in which one class of games called tame games are defined for 
which the solution can be easily found. A subclass of the tame games are the 
miske graph games whose graph satisfies the following condition. 

CONDITION A. Every non-terminal vertex of SG-value zero has a 
follower of SG-value one. 

It is easily seen that the game Nim satisfies this condition vacuously. 
Bouton [6] also solved the misere version of Nim and noted that it required 
only a small modification of the solution of the normal version of Nim. In 
Ferguson [9, Corollary of Theorem 21, it is noted that the natural 
generalization of Bouton’s solution is also a solution to a general mistre 
graph game if, and only if, the graph satisfies Condition A. (Note in that 
paper, a different definition of graph game is used, one that allows 
“splitting.“) This solution is the following. Let 

and 

Q, = {x = {v~,..., v,}] g(x) = 1 and g(vi) < 1 for all i}, 

Q, = {x = {I,+,..., v,}] g(x) = 0 and g(v,) > 1 for some i}. 

Then the set of P-positions is 

p=Q,uQ,- (3) 

The concept of annihilation games was proposed by Conway and studied 
by Fraenkel [lo] and Fraenkel and Yesha [ 111. See also Fraenkel, Tassa 
and Yesha (1978) [ 121. Such games are played on a directed graph with a 
finite number of counters on distinct vertices of the graph. Play proceeds as 
in ordinary graph games until some counter is moved to a new vertex which 
is already occupied by another counter, when the annihilation rule comes 
into play: both counters are annihilated, i.e., removed from play. The 
multiset x used to describe a position now becomes a set. 

For progressively finite graphs with finite SG-functions, the P-positions for 
normal play in annihilation games are exactly the same as those in games 
without the annihilation rule, namely, positions that satisfy (2). For loopy 
graphs, however, annihilation games are quite distinct and it is to these 
games that Fraenkel and Yesha devoted their study. 
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It is the purpose of this paper to study annihilation games on progressively 
finite graphs with finite SG-functions under the midre play rule. It turns out 
that the theory is quite distinct from and more complex than that without the 
annihilation rule. Even misbre annihilation Nim is distinct from misere Nim. 
For immediate comparison we give the solution here; this follows 
immediately from Theorem 3 in Section 3. 

For misere annihilation Nim, the set of P-positions is P = Q, U Q,, where 

Q, = {x = {vl ,..., v,,}] g(x) = 1 and the vi > 2 can be grouped into pairs of 
the form { 2j, 2j + 1 } for various j > 1 }, 

Q, = {x = (v~,..., v, }I g(x) = 0 and the v1 > 2 cannot be so grouped}. 

Asanexample,ifx={10,21,20,11},theng(x)=10~11?20?21=O 
but x is not in Q, since there exists a grouping into pairs { 10, 1 1 } and 
{ 20,2 1 }. This can be moved into Q, by using one of the annihilation moves, 
21-120 or ll-+ 10. 

In Section 2, it is shown for mistre annihilation games on progressively 
finite graphs with finite SG-function satisfying Condition A, that there is 
only one kind of vertex of SG-value 0 and only one kind of vertex of SG- 
value 1. That is, a counter on one vertex of SG-value 0 or 1 may be 
transferred to another vertex of the same SG-value without changing the 
outcome of the game. That this is not true for vertices of SG-value 2 or 
greater may be seen by referring to the examples of Section 4. 

In Section 3, two general theorems are given that characterize the set of P- 
positions in an easily computable fashion, provided certain additional 
conditions are satisfied. The first theorem applies to unbounded SG-functions 
provided the graph satisfies an additional Condition B on the edges joining 
vertices of SG-values greater than one. In the special case of graphs with 
SG-functions having values no greater than 3, a considerably weaker 
Condition C is used in the next theorem. 

In Section 4, the theorems of Section 3 are applied to the analysis of 
various subtraction games. Such games are known to satisfy Condition A 
(Ferguson [9]). In particular, all subtraction games with subtraction sets a 
subset of (1,2,3,4,5,6, 7) are scanned to see how successful the theorems 
of Section 3 are. On this basis, one feels they are quite successful, and the 
variety of simpler statements one can give to the solutions show the strength 
and usefulness of the theorems. The failures are collected in Sections 4.10 
and 4.11. The former section indicates a need to generalize Theorem 3, as 
none of the games there have been solved. The latter section contains the 
only two games with SG-values no greater than three found earlier that did 
not satisfy Condition C. Solutions to both games are given in this section 
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indicating that Condition C can be weakened, and holding out hope that a 
general solution to games with SG-values no greater than 3, satisfying 
Condition A, can be found. 

2. UNIQUENESS OF SG-OS AND SG-1s 

It is assumed throughout the rest of this paper that G is a progressively 
finite graph with finite SG-function, g. It is also assumed throughout without 
further explicit mention that Condition A is satisfied. This is a fairly 
restrictive assumption. For example, it rules out the very simple graph 

. 
a b C d 

0 1 2 0 

The vertex d has SG-value 0 and its only follower is c of SG-value 2. No 
general theorems, not using Condition A, are presented here. 

We are concerned solely with annihilation games on G under the misbre 
play rule. Without the annihilation rule, the P-positions for all such games 
are described by (3), the analogue of Bouton’s solution. Henceforth, the word 
“game” will be short for midre annihilation game. In addition, we use the 
notation SG-k as short for vertex of SG-value k, where k is a non-negative 
integer. 

The first theorem implies that all SG-OS are equivalent in the sense that 
transferring a counter from one SG-0 to another does not change the 
outcome (i.e., a P-position stays P, and an N-position stays N). In particular, 
removing the counter from an SG-0 does not change the outcome, since it 
would be like transferring it to a terminal node. The second theorem shows 
that all SG-1s are equivalent. In addition, it shows that removing the 
counters simultaneously from two SG-1s does not change the outcome. 

These theorems are proved by contradiction and induction using the 
notion of the simplicity of a position. We say a position x is simpler than a 
position y if there is a sequence of moves that takes y into x. 

LEMMA 1. The game with only one counter on non-terminal vertex v is a 
P-position if, and only if, g(v) = 1. 

This follows from the Corollary to Theorem 2 of Ferguson [9] since 
annihilation plays no role. It can otherwise be easily seen by checking that 
moving to an SG-1 is a optimal strategy when Condition A is satisfied. It is 
interesting to note that the only place Condition A is explicitly used in the 
proofs contained in this paper is in this lemma. 



210 THOMAS S.FERGUSON 

We note the following characterization of the P- and N-positions for 
mike graph games. 

(i) Every terminal position is in N. 

(ii) Every follower of a P-position is an N-position. 

(iii) Every non-terminal N-position has a P-position as a follower. 

THEOREM 1. If x= {Up,..., u,} md Y= {Vl,“‘, vn, v,+1}, where 
g(u,+,) = 0, then x and y have the same outcome (i.e., both are N or both 
are P). 

ProoJI: Suppose the theorem is false. Let x and y be a simplest counterex- 
ample in the sense that no counterexample has a simpler x and for that x no 
counterexample has a simpler v,+ i . 

Case 1. x E P and y E N. Since x is not terminal, neither is y and 
y+y’EP. 

la. If the move involves one of the components of X, say v, --) V; 
without annihilation, then x’ = {vi ,..., u;} E N and y’ E P gives a simpler 
counterexample. 

lb. If the move annihilates one of the components of x, say v, + u,, _ , , 
then x’ = {vi,..., o,-~} E N and y’ E P is simpler. 

lc. If the move annihilates v,+ i, say v, --f u,+ 1, then 
y’ = {u 1,*--, z),-~} EP and x’= {u, ,..., v,,-i,u,+i} EN is simpler. 

Id. If the move involves moving the new component without 
annihilation, say v,+ i --t u;+ i, then there exists a further move VA+, + u:+ i 
with g(vp+ ,) = 0. If there is no annihilation, this gives a counterexample 
with a simpler y. If there is annihilation, say u:,, = v,, then y” = 
IV l,“‘, 21,-l } E N and x is simpler. 

le. If the move involves the new component with annihilation, say 
V n+1+ U”, then since g(v,) cannot be zero, there is a move u, + VA such that 
g(v;) = 0. Whether or not this causes annihilation, the resulting y’ E P and 
x’ E N is simpler. 

Case 2. x e N and y E P. By Lemma 1, x is not terminal since then y 
would be in N. Hence there exists a move x + x’ E P. 

2a. If the move causes annihilation, say u, + v,-i, then x’ E P and 
Y' = {q,..., 0,-z, u,+1 } E N is a simpler counterexample. 

2b. If the move causes annihilation with v,+ i, u, --f v,+ i, then y’ = 
Iv 1,*-*, u,-i} EN and x’ = {ui,..., u,-~, u,+r} E P is simpler. 

2c. If the move is without annihilation, u, + VA, then x’ E P and y’ = 
{v i ,..., VA, v,+ i } E N is simpler. 
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In proving the corresponding result about SG-Is, we prove both that any 
SG-1 may be exchanged for any other, and that two SG-1s may be removed 
without changing the outcome. These two statements are proved together. 

T~~XUM 2. If x= {ul ,..., ?I,-~, un} and y= {u ,,..., unpl, u:} with 
g(u,) = g(uA) = 1, then x and y have the same outcome, If x = (0, ,..., un} and 
Y= {ul,..., u,, u,+1, u,+2} with g(u,+l ) = g(u,+,) = 1, then x and y have the 
same outcome. 

Proof: Suppose the theorem is false. Find a counterexample with a 
simplest x and y with the smallest value of n. There are four cases to 
consider, whether x is a counterexample to the first or second statement, and 
whether x E P and y E N or vice versa. From Theorem I, assume without 
loss of generality that no component of x has SG-value 0. 

Case 1. x = {u, ,..., u,} E P with g(u,) = 1 and y = {u, ,..., u,-i, VA} EN 
with g(uA) = 1. There exists a move y+y’ E P. 

la. If the move is from a vertex also in x, say u,-, + u;-,, with- 
out annihilation, then x’ = {ul ,..., VA-, , un} E N and y’ E P is a simpler 
counterexample; with annihilation, say u;-~ = u,-*, then x’ = 

Iv , ,***, u,-3 9 un} EN is simpler; with annihilation of u;, say u:-i = u;, 
then y’ = {u, ,..., u,-~} E P and x’ = {u ,,..., un-*, VA, u,} EN with g(uL) = 
g(u,) = 1 gives a counterexample with a smaller n. 

lb. If the move is from u; and causes annihilation, say u; + u,- i, 
then since g(u,-,) # 0 or 1, there is a move u,-, + uk- i such that 
g(uAel) = 1. With no annihilation, this gives x’ = {u, ,..., unP2, VA-, , un} E N 
with g(uA-,) = g(u,) = 1; with annihilation of u,, this gives 
x’ = {VI )..., II,-,} E N; with annihilation of say u,-~, this gives 
x’ = {?I1 )..., u,- 3, u,} EN with g(u,-2)=g(u,) = 1. This gives a simpler 
counterexample with y’ = {u, ,..., u,-,} E P. 

lc. If the move is VA + ui with no annihilation, g(u:) cannot be 0 
without contradicting Theorem 1 (since u, can be moved to an SG-0), so 
that there is a further move u; + ur with g(uF) = 1; with or without 
annihilation, this gives a simpler counterexample. 

Case 2. x = {u I ,..., u,} EN with g(u,) = 1 and y = {vi ,..., u,-~, u;} E P 
with g(uA) = 1. This case is symmetrical to Case 1, with x and y 
interchanged. 

Cuse3. x= {u i ,..., u,}EP and V={U ,,..., z~,,u,,+~,u,+~}EN with 
g(u,+ ,) = g(u,+,) = 1. There exists a move y + y’ E P. 

3a. If the move is from a vertex also in x, say u, + u;, then whether or 
not there is annihilation, x’ = {u I ,..., VA} E N and y’ E P is simpler. 
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3b. If the move is from one of the additional vertices of y with 
annihilation, say v, + I + v,, then since g(v,) # 0 or 1, there is a move 
v, + VA with g(vA) = 1 taking x into x’ = {vi,..., VA} E N. With or without 
annihilation this is simpler. 

3c. If the move is v,+i + VA+, without annihilation, then since 
g(vA+ i) # 0 or 1, there is a move VA+ i + v:+, with g(ui+i) = 1. With or 
without annihilation this gives a simpler y” E N. 

Case 4. x = {ul,..., v,}EN and y= {vi,...,v,, v,+i, v~+~}EP with 
g(v,+J = g(v,+,) = 1. x cannot be, terminal since y can be moved to 
y’ = {v ,,...,v,,v,+1,v~+*}EN with g(v; + J = 0, which contradicts 
Lemma 1, Theorem 1. Hence, there exists a move x --f x’ E P. The same 
move in y, say y + y’ E N, gives a simpler counterexample whether or not 
there is annihilation. 

As a corollary to Theorems 1 and 2, we have a characterization of the P- 
positions among these positions with counters only on vertices having SG- 
values 0 or 1. 

COROLLARY. Under Condition A, ifx = {vl ,..., v,,} with each g(vi) = 0 or 
1, then x is a P-position if and only if g(vi) = 1 for an odd number of Vi. 

Of course, the optimal strategy and hence simple direct proof of this 
corollary is clear. If your opponent moves from a position of this form, you 
can always return it to a position of this form. Your opponent will never be 
left without a move. 

Theorem 1 implies that there is only one type of vertex with SG-value 0. 
We may as well assume that every vertex of SG-value 0 is terminal; that is, 
the outcome of the game is not changed if all edges leading out of vertices 
with SG-value 0 are deleted. Similarly by Theorem 2, there is only one type 
of vertex of SG-value 1. The outcome of the game is not changed if all edges 
leading out of each SG-1 are deleted except for one edge, that edge going to 
a terminal vertex. 

Together, these theorems imply that the whole structure of the game on 
the graph is determined by the connections between the other vertices, that 
is, those vertices of SG-value 2 or greater. We call the subgraph on the set 
V, of vertices of SG-value 2 or greater the reduced graph. 

3. Two CHARACTERIZATION THEOREMS 

We shall now prove two general theorems characterizing the set, P, of P- 
positions in the game under conditions involving only the connections 
between vertices with SG-values 2 or greater. The proofs use the standard 
procedure of verifying statements (i), (ii), and (iii) of the previous section. 
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In Theorem 3, we find the P-positions provided the graph satisfies the 
following additional condition. For each even integer k, a vertex u of SG- 
value k is called a terminal k if it does not have a follower of SG-value 
k + 1. For each even k > 2, and for each terminal k, v, form the set W by 
starting with W = {v} and then recursively joining to W all vertices of SG- 
value k or k + 1 that have a follower in W. Label these sets W, , W, ,..., in 
some order. Every SG-J’ for j > 2 belongs to at least one of the sets Wi. 

CONDITION B. The sets W,, W, ,..., are disjoint, and for every vertex v 
of SG-value 2n or 2n + 1 for n > 1 and for every k, 1 < k < n, either Bl: 
there exist some W, and w, E W, and w1 E W, with v + w, , 

2, -, w2, g(wl) = 2k and g(wJ = 2k + 1, 

or B2: for m = 2k and m = 2k + 1, there exist w, and w2 in distinct 

Wi with u+wl,v+w2 and g(wJ = gh> = m. 

For Nim, with vertices {0, 1, 2,...} and SG-function g(v) = ZJ, the sets 
WI 9 w, v..., me {2, 31, {4, 51, {6, 7},..., and so satisfy Condition B. 

The main part of Condition B is that the sets Wi be disjoint. If the Wi are 
disjoint, the rest of Condition B is also necessary for Theorem 3 in the sense 
that on such graphs positions x can be found for which the conclusion of 
Theorem 3 is not true. As a counterexample, consider the reduced graph 

The position x consisting of the vertex of SG-value 4 and the lower vertex of 
SG-value 2 is a P-position with SG-value 6. 

THEOREM 3. Under Condition B, P = Q, U Q, where 

Q, = {x: g(x) = 1 and each set W, contains an even number of components 
of x), 

Q, = {x: g(x) = 0 and some set W, contains an odd number of components 
of x}. 

ProoJ (i) Clearly no terminal x is in P. 

(ii) SupposexEQ,,x+y,andg(y)=O.AchangeO+lor l+Oin 
the SG-value occurs if and only if one of the components is moved from SG- 
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value 2j to 2~‘+ 1, or from SG-value 2j + 1 to 2j for some j> 0 with or 
without annihilation. Since the sets IV, are disjoint, y also has an even 
number of components in each Wi, and so is not in Q, . On the other hand, if 
x E Q,, x -+y and g(y) = 1, the same argument works to show that y must 
have an odd number of components in some Wi and so is not in Q,. 

(iii) Suppose x 6?? Q, U Q,, and x is not terminal. 

Case 1. g(x) > 2. There exists a move x + y with g(v) = 0 involving the 
moving of some component of x from one vertex to a follower u’ of lesser 
SG-value. If y E Q,, we are done. If not, y has an even number of 
components in each W,. Therefore, move the indicated component either to a 
vertex of the same SG-value as V’ in another Wj (case B2) or to a vertex of 
SG-value one greater or one less than V’ depending on whether g(v’) is even 
or odd (in the same Wj (case Bl) if its SG-value is greater than one). 

Case 2. g(x) = 1 and some Wi contains an odd number of components of 
x. Since g(x) is odd, there is at least one component with odd SG-value. 
Moving any such component to a vertex with SG-value 1 less does not 
disturb the parity in the Wi with or without annihilation and puts x into Q,. 

Case 3. g(x) = 0 and there is an even number of components of x in each 
Wi and x is not terminal. If there exists a component of x with odd SG- 
value, then any move from SG-value 2j + 1 to 2J (j > 0) changes the SG- 
value of x by 1 without disturbing the parity in the Wi, and puts x into Q,. 
If all components of x have SG-value 0 then x E N by the Corollary of 
Theorem 2. Otherwise, all components of x have even SG-values, at least one 
of SG-value 2 or greater, so for somej > 1 there are at least two components 
of x with SG-values 2j in the same W,. At least one of them has a follower 
of SG-value 2j + 1. This move would put x into Q,. 

We now assume that the graph has no SG-values greater than 3, and 
obtain in Theorem 4 a considerable improvement over the previous theorem. 

Let Vi denote the set of vertices of SG-value greater than 1. Every graph 
that has an SG-2 has a terminal 2. A terminal 2 is a terminal vertex of the 
reduced graph. For a given terminal 2, say v, we may construct a set, W, 
generated by v by first putting W = {v} and then adding vertices to W by the 
following rule until no more vertices are added. 

RULE. Add to W all vertices w E V, such that 

(1) w has at least one follower in W, and 

(2) if w’ E V, is a follower of w not in W, then there is a follower of 
w’ that is in W. 

Each set so constructed contains exactly one terminal 2. Let us denote the 
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sets so constructed by W, , W, ,..., finite or countably infinite, one for each 
terminal 2. Let R denote the set of remaining vertices in V, 

R= V,-u Wi. 

It is important to note that the sets W, so constructed are disjoint. In fact, 
there is not even any communication between the sets Wi, that is, there is no 
edge joining a vertex of Wi to Wj if i #J If there were, there would be a 
simplest v E W, such that u + w  E W, ; but by the Rule for constructing Wi, 
there would be a v’ E Wi such that w+ v’, and by the Rule for constructing 
Wj, there would be W’ E Wj such that U’ + w’; thus, u would not be the 
simplest. 

For arbitrary disjoint sets U,, U,,..., of vertices define 

E(U, 3 U,,...,) = { x: x has an even number of components in each Ui 

and none in V, - U Vi}. 

Note that E(U,) c E(U, , 17,). 
The following theorem states under certain conditions that the set of P- 

positions has the form P = Q, U Q, where 

Q, = {x: g(x) = 1 and x E E( W,, W,,...,)} 

Q, = {x: g(x) = 0, x non-terminal and x k Q, } 

where x % Q, stands for the statement “x does not have a follower in Q, .” 
The following lemma gives a better understanding of the set Q,. 

LEMMA 2. Let Q, = {x: g(x) = 1 and x E E( W,, W, ,..., )}. Let x be non- 
terminal with g(x) = 0. Then x + Q,, if and only if (1) x E E( W,, W,, 
W,,...,), where W,, consists of some annihilable pair in R, or (2) for some 

j > 1 and v E R with a follower in W,, x E E( W, ,..., W, + {v} ,..., }. 

Proof: I$ If x satisfies (l), annihilate the pair if there is one in x. Else 
any SG-1 + 0 or SG-0 + 1 works. Else there exists two elements in some Wi. 
At most one is a terminal 2. The other must have a follower in Wi. If x 
satisfies (2) but not (l), then v E x, so move u + Wj. 

Only iJ: If the move X-P Q, involves moving an SG-1 + 0 or SG-0 + 1, 
then x f Ef W, , W, ,...,). Otherwise, the move involves moving an SG-3 -P 2 
or an SG-2 + 3. x cannot have 3 or more components in R. If it has 2, they 
must be an annihilable pair as in (1). If it has 1, then either it is movable 
into some W, as in (2), or some move from some W, can annihilate it, in 
which case it is movable into that Wj by part (2) of the construction of Wj, 
so x is as in (2). If it has none, then x must be in E( W,, W,,...,) since there 
is no communication among the Wi. 
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CONDITION C. C 1. If (u, u) are an annihilable pair in R, then they do 
not both have followers in the same set Wi. 

C2. If v is an SG-3 in R with followers only in R, then there is no Wj 
such that all followers of v have a follower in Wj. 

C3. There does not exist an SG-2 in R and an SG-3 in R with 
followers only in the same identical set of Wts, and no followers in R. 

This condition is much weaker than Condition B restricted to graphs with 
SG-values no greater than 3, but it is still quite restrictive. Here are the 
reduced graphs of three simple examples that violate Conditions Cl, C2 and 
C3, respectively, 

The applications of Theorem 4 made in the next section are all of a special 
type in which the graph satisfies the simpler condition: 

CONDITION C'. No SG-2 in R has a follower in U Wi. 

It is easy to see that Condition C’ implies Condition C. Here is thr 
reduced graph of a counterexample to the converse: 
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2 3 7 2 3 

w2 3 

w3 2 

THEOREM 4. Suppose the graph has no vertex of SG-value greater than 
3 and assume Condition C holds. TheA, P = Q, U Q,, where 

Q, = {x: g(x) = 1 and x E E( W’,, W, ,..., )} 

Q, = {x: g(x) = 0 and x non-terminal and x k Q,}. 

Proof: (i) There are no terminal positions in P. 

(ii) Let x E Q,, x + y and g(y) = 0. Since the SG-value has changed 
by 1, the parity of x in the sets Wi does not change (since they do not 
communicate), unless some w  in some Wj moved to w’ in R, in which case 
the Rule implies that there is a w” in W,, so that w’ + w” puts y back into 
Q,; so Y g Q,. 

Let x E Q,, x + y. Then y f$ Q, by the definition of Q,, 

(iii) Suppose x & Q, U Q,. 

Case 1. g(x) > 2. 

la. x has 3 or more components in R. Removing one of them (i.e., 
putting it to SG-0 or 1) so that the remaining two (or more) are not an 
annihilable pair in R, puts x into Q, by Lemma 2. 

lb. x has 2 components in R. If not an annihilable pair, removing one 
of the components of some W, (which exists because g(x) > 2 implies there 
is an odd number of components in I’,) can. put x into Q,. If an annihilable 
pair, one of them can be removed to put the position into Q, by Condition 
Cl and Lemma 2. 

lc. x has 1 component in R. Removing this component to SG-1 or 0 
depending on whether or not the result is in E( W,, W,,...,) puts x into 
Q,uQo. 

Id. x has no components in R. Moving any SG-2 or 3 to SG-0 or 1 
depending on whether the result is in E( W,, W,,...,) or not puts x into 
Q,uQo. 

Case 2. g(x) = 1 and x & E( WI, W,,...,). We must show we can move 
x -+ y with g(v) = 0 where y is not in one of the two categories of Lemma 2. 
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2a. x has no components in R. Moving any SG-1 + 0 or any SG-3 + 2 
within some Wi puts x into Q,. 

2b. x has 1 component in R. If x satisfies (2) of Lemma 2 with 
component v E R, by the Rule, there exists a move u + u’ E V, - Wj such 
that u’ % W,. Since the move v + v’ changes an SG-2 to SG-3 or conversely, 
the result will be in Q,. Otherwise, move any SG-1 + 0 or any SG-3 -+ 2 
within some Wi. If such a move does not exist, the element of R is an SG-3; 
moving it to the correct SG-2 using Condition C2 puts x into Q,. 

2c. x has 2 components in R. If not an annihilable pair, moving any 
SG-1 -+ 0 or any SG-3 + 2 within some Wi puts x into Q,. If such a move 
does not exist, there is one SG-3 and one SG-2 in R. If the SG-3 or the SG-2 
can be moved within R, such a move puts x into Q,. Otherwise Condition 
C3 implies we can move one of them into some W, to put x into Q,. If the 
two components of R are annihilable, Condition Cl implies we can move 
one of them into some Wj to put x into Q,. 

2d. x has 3 or more components in R. Moving any SG-1 + 0 or any 
SG-3 + 2 within some W, puts x into Q,. If such a move does not exist, x 
has an odd number of SG-3s in R. If x has 3 or more SG-3s, moving any 
one of them to an SG-2 puts x in Q,. Otherwise, x has a unique SG-3 (in R). 
If this SG-3 has a follower in some Wi or an unoccupied follower in R, 
moving it there puts x in Q,. Else an occupied follower in R is an SG-2 
which may be moved to R or to at least two different Wi, one of which will 
put x in Q,. 

Case 3. g(x) = 0 and x is non-terminal and x 65 Q,. Then x can be 
moved to Q, by definition of Q,. 

Two special cases of this theorem are of interest. The first case occurs 
when R is empty. Then Theorem 4 becomes a special case of Theorem 3, and 
the simpler description of Q, given there is valid. 

The second case occurs when each set W, consists of one element, namely 
the singleton 2. Then, since an even number of elements in a singleton set 
means no elements, the description of Q, and Q, simplifies to 

Q, = {x: g(x) = 1 and x has no SG-2s or SG-3s} 

Q, = {x: g(x) = 0 and x has at least one SG-2 or SG-3 but 

not only an annihilable pair}. 

4. APPLICATIONS TO SUBTRACTION GAMES 

Let S, be a non-empty subset of the positive integers. A subtraction game 
with subtraction set S, denoted by G,, is the game played on the graph 
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whose vertices are the non-negative integers and whose directed edges 
include an edge from k to j if and only if k -j E S. Nim is the subtraction 
game G, when S is the set of all positive integers. 

That all subtraction games satisfy Condition A is proved in Ferguson [9]. 
To see how successful Theorems 3 and 4 are in solving subtraction games, 
we will investigate the subtraction sets S, = { 1, 2,..., k}, and all subtraction 
games G, with S c { 1, 2,..., 7}, plus a few more with SG-sequences identical 
to one of these. A table of these, due to Austin [ 131, may be found in 
Berlekamp, Conway and Guy [14], which is essentially duplicated in 
Table I. 

All subtraction games with finite S have eventually periodic SG- 
sequences. For a given S, it may happen for some k & S that g(n) # g(n + k) 
for all n > 0, in which case k may be added to S without changing the SG- 
sequence. In particular, provided the period starts at 0 (which occurs for all 
S in Table I except S = { 2,4,7 }), if s E S then s + 1 can be added where 1 is 
the period, and if k can be added so can k + 1. For each S in the table, all 
other additions that may be made to S without changing the SG-sequence 
are indicated. It is noted later that the SG-sequence alone does not determine 
the solution. 

4.1. The Subtraction Sets S, = { 1, 2 k} ,..., 

For the subtraction set S,, the SG-sequence is 

u: 0 1 2 . ..k k+l k+2 a-. 2k + 1 2k + 2 .a. 

g(u): 0 1 2 -9. k 0 1 ... k 0 . . . 

cyclic of period L = k + 1. It is easy to see that Condition B is satisfied since 
every vertex u 2 k has a follower of every SG-value from 0 to k excluding its 
own SG-value. 

For odd k, the sets W, may be taken to consist of all vertices of SG-value 
2i or 2i + 1 for i = 1,2,..., (k - 1)/2. Thus for odd k, the P-positions are 
P = Q, U Q,, where 

Q, = {x: g(x) = 1 and x E E( W, ,..., WC,-,,,,)} 

Q, = {x: g(x) = 0 and x & E( W, ,..., WC,- &}. 

In particular, for S, and S, the description of Q, and Q, simplifies to 

Q, = {x: g(x) = 1 } 

Q,=0. 

This is because for S, and S,, g(x) = 1 implies that there are an even 
number of SG-2s and 3s and an even number of SG-4s and 5s in x. For S, 
however, this simplification does not take place because x = {2,4,6} E Q,. 

502a/31/3-2 
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TABLE I 
Subtraction Games with Subtraction Sets Contained 

in {1,2,3,4,5,6,7) 

s SG-Sequence 
Period 

I Additions“ 

/:I 
‘2 (293) 
Yi3’ 

II,41 
G4) 
(394) 

{1,3,4t 
11,2,3,4) (51 
1:‘:; 
{415) 

{1,4,5t{l,3,4,7) 
12,3,5112,4,5} 

11,2.3,4,5) 
(6) 

;:$ 

i::;; 

{l,i6t 
{L&6) 

1:3 
{2,4,6;{i3,5,6~ 

i-&5,6) 
(1,2,4,6~{1,2,6,7) 

{1,4.5,63 
(1,2,4,5,6t 

(L&3,4,5,6) 
171 

0101 
00110011 
012012 
000111000111 
00112 
0123 
00001111 8 
01012 5 
001122 6 3 
0001112 
0101232 
01234 
OOOOO11111 
001102 
00011122 
000011112 
01012323 
0011223 
012345 
OOOOOO111111 
0101012 
000111222 
0000111122 
00000111112 
0120123 
010101232 
01010123232 
001120312 
00112233 
00110213021 
01201234 
010123234 
0120123453 
0123456 
OOOOOO01111111 
OOllOO112 
0001110221 
00001111222 
OOOOOll11122 
0000001111112 
01012012 
010101232323 
00112203102 
0011021322031001122332 
0011001120312 
0001112223 (3,4,7)(3,5,7t(3,6,7) 

11,4,6,7) 0101201232012 
{2,3,4,7) 00112203142 

(2,3,5,7t{2,4,5,7)(2,4,6,7) 001122334 
1% 5,6,7t 001102132233 

(L&S, 67) 01201234534 
(1,3,4,6,7t(l,4,5,6,7) 0101232345 

{ 1,2,3,4,5,6,7) 01234567 

2 
4 

6 
5 
4 

7 6 
5 

10 
7 
8 4 
9 
8 3,597 
7 3-4 
6 

12 

9 4,5 
10 5 
11 
7 5 
9 8 

11 3,8, 10 
8 
8 3,4,5 

11 9 
8 4,7 
9 338 

10 8.9 

14 
9 

10 
11 5,6 
12 6 
13 
8 

12 3*5,9 
3 10” 

22 11, 15, 17,20 
13 11 
10 4,536 
13 9, 12 
11 8,9 
9 3,4,5,6 

12 10 
11 4, 9, 10 
10 3,5,9 
8 

s, 
s, 
s* 
s, 
s, 
s, 
s, 
s2 
s2 

!$?2 
s4 
s, 
s2 
s2 

? 
§4.i 
s5 
s, 
s, 
s* 
s, 

$?3 
$4.2 
54.2 
54.2 
54.4 
$4.2 

54.10 

g20 
& 
s, 
s, 
s2 
s* 
s* 
s* 
s* 

$?5 
$4.6 
$4.2 
$4.3 
14.7 
54.10 
54.10 
$4.8 
14.10 
54.9 
s, 

’ Additions to S that do not change the SG-sequence include s + n,I with n > 0 for s E S or s an 
element of this column. Exception: For S = (2,4,7), the only additions are 10, 13, 16,.... 



MISkRE ANNIHILATION GAMES 221 

For even k, the sets W, are as above for i = 1,2,..., (k - 2)/2, but each 
vertex of SG-value k has no follower of SG-value k + 1 so that each SG-k 
forms a set W, by itself i = k/2, k/2 + l,.... Hence for even k, P = Q, U Q,, 
where 

Q, = {x: g(x) = 1 and x E E( W, ,..., W+-2j,2)} 

Q, = {x: g(x) = 0 and x & E( W, ,..., WC,-,,,,)}. 

In particular, S,, S, and S, have simplified statements. For S, and k = 2, 4, 
or 6, 

Q, = {x:g(x) = 1 an x d h as no component of SG-value k}, 

Q, = {x: g(x) = 0 and x has at least one component of SG-value kf, 

The solution for S, works for any graph game whose graph satisfies 
Condition A and has only SG-values 0, 1, and 2. From Table I, these include 
games with subtraction sets consisting of one or two elements, and the game 
with S = { 1,4, 7}, plus supersets with the same SG-sequence, such as 
{ 1, 3, 5}, { 1,2,4}, { 1, 2, 7, 8}, etc. This solution is essentially the same as the 
solution of the corresponding non-annihilation midre subtraction games. 

The solution for S, works for any graph game whose graph has vertices of 
SG-value no greater than 3 provided Condition A is satisfied and provided 
there is only one terminal 2. These include { 1,2, 3 }, { 1, 3,4, 6}, { 1,4, 5 }, 
{1,3,6,f31, {1,5,6,81, P, 39% 71, 12, 59% 91, IL% 71, {2,6, 7, lli, 
( 1,3,4,7} and the supersets with the same SG-sequence. 

The solution for S, works for any graph game whose graph has vertices of 
SG-value no greater than 4 provided Condition A is satisfied and provided 
there is only one terminal 2. These include { 1,2,3,4}, { 1,4,5,6} and 
supersets with the same SG-sequence. 

The solution for S, works for any graph game whose graph has vertices of 
SG-value no greater than 5 provided Condition A is satisfied, thereis only 
one terminal 2, and there is only one terminal 4. These include { 1,2,3,4,5}, 
(1,3,4,6,7,9}, { 1,4,5,6,7,9} and supersets w.ith the same SG-sequence. 

4.2. (1,3,4) and Supersets with the Same SG-Sequence 

That the SG-sequence alone does not determine the soIution can be seen 
by considering the subtraction set { 1,3,4} and various supersets with the 
same SG-sequence. Results of this analysis apply equally well to the 
subtraction sets { 1, 3, 6}, { 1, 5,6}, (2, 3, 6}, {2,5,6}, and (2, 6, 7) and their 
supersets with obvious modifications. 

EXAMPLE 1. { 1,3,4}. The SG-sequence of {l, 3,4} is contained in 
Table I. The reduced graph is 

4-5-6 11-12-13 18-19-2O.e. 
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where the direction of the edges is always from the larger number to the 
smaller. The terminal 2’s are vertices 4, 11, 18 ,..., 7k - 3 ,.... Each of these 
generates a set Wi consisting of three elements. W, = (4, 5,6), 
w, = { 11, 12, 13) )...) W, = { 7k - 3, 7k - 2, 7k - 1) ,.... The set R is empty, 
thus leading to a set of P-positions described in Theorem 3. 

EXAMPLE 2. { 1,3,4,6}. The reduced graph becomes 

This yields a unique terminal 2 and a set W, identical to V, . The solution is 
the same as that for S,. 

EXAMPLE 3. { 1,3,4, 13). The reduced graph is 

-5&s==?== - - 
25 -26 -27 

There are two terminal 2s leading to W, = 14, 5, 6, 18, 19, 20,...,} and W, = 
{ 11, 12, 13, 25, 26, 27 ,..., }, and an empty R. The set of P-positions is given 
in Theorem 3. 

EXAMPLE 4. { 1,3,4,20}. The additional move now breaks V, up into 
three pieces, W, = 14, 5, 6, 25, 26, 27 ,..., }, W, = { 11, 12, 13 ,..., } and 
W, = { 18, 19, 20,...}, and again R is empty. Similarly, one can handle sets of 
the form { 1, 3, 4, 7k - l}. 

EXAMPLE 5. { 1, 3, 4, 13, 20). Now there are two terminal 2s, namely, 4 
and 11, but the sets they generate, namely, W, = {4, 5, 6, 18, 19, 20, 39) and 
W, = { 11, 12, 13 }, do not satisfy Condition C. Condition C 1 is violated by 
the annihilable pairs (25, 26) and {32, 33}. See the reduced graph in 
Section 4.11 where the solution is given. 

EXAMPLE 6. { 1, 3, 4, 8}, The reduced graph is 
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The terminal 2s are 4, 11, 18, 25, 32 ,.... In forming the sets Wi only the first 
gets larger. The sets are WI = (4, 5, 6, 13 }, W, = { 1 1 }, W, = { 18 } ,.... We 
may lump the sets W,, W, ,..., into R to simplify the description of the sets 
Q, and Q,, where R = {12, 19, 20, 26, 27 ,..., }. Let 

R’=RV W,U W,... = (11, 12, 18, 19, 20, 25, 26, 27 ,... }. 

Then 

Q, = {x: g(x) = 1 and x has no components in R’} 

Q, = {x: g(x) = 0 and x has at least one component in R’ other than 
just the vertex 12 or just a single annihilable pair in R’}. 

4.3. { 1, 2, 6) 

The reduced graph is 

2 -13a -2o< 

Thus W, = (5, 6, 12, 13, 19, 20 ,..., }, W,= {2}, W, = {9}, W,,= {16} ,..., 
R = 0. Let R’ = UF W, = { 2,9, 16 ,... }. With this notation, Q, and Q, 
become 

Q, = {x: g(x) = 1 and x has no components in R ’ }, 

Q, = {x: g(x) = 0 and x has at least one component in R’}. 

Any supeset of { 1,2,6} with the same SG-sequence has the same reduced 
graph and hence the same solution. Similarly for the solutions of {2,3,5}, 
{2,4,5}, {3,4,7), {3,5,7}, {3,6,7} and supersets with the same SG- 
sequence. 

4.4. {2,4,6} and Supersets with the Same SG-Sequence. 

A similar analysis may be made of {3,6,9}, {2,4,6, S}, etc. 

EXAMPLE 1. {2,4,6}. The reduced graph is 

4- 6 -12-14-20-22- 

5 - 7 -13-15-21-23- 

The terminal 2s generate W, = {4,6, 12, 14 ,..., } and W, = (5, 7, 13, 15 ,..., } 
and R is empty. The P-positions are 

Q,= {x:&x)= 1 andxEE(W,, W,)}, 

Q, = {x: g(x) = 0 and x f$ E( W, , W,)}. 
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EXAMPLE 2. {2,3,4,6}. The reduced graph is 

4- 6 - 12- 14-20-22- 

\ \ -.--I 
5 - 7 -13-15-21-23- 

The terminal 2s generate W, = {4,6, 12, 14,...,} and W, = {5}, with 
R = { 7, 13, 15 ,..., }. With R ’ = W, U R, the P-positions are 

Q, = {x: g(x) = 1 and x has no components in R’}. 

Q, = {x: g(x) = 0 and x has at least one element in R’ other than a 
single element of (7, 15, 23,...,) and other than a single 
annihilable pair of R ’ }. 

EXAMPLE 3. {2,4,5,6}. The reduced graph is 

4- 6 -12-14-20-22-28- 

/ / / 
5 - 7 -13-15-21-23- 

The terminal 2s generate W, = {4,6} and W, = { 5, 7, 13, 15,...,} with 
R = { 12, 14, 20, 22,...,}. This graph does not satisfy Condition C2 at 14. The 
solution to this game is presented in Section 4.11. 

EXAMPLE 4. { 2, 3, 4, 5, 6) or (2, 3, 5, 6 1. The reduced graph is 

4- 6 -12-14-20-22-28- 

/\/\/ 
5 - 7 -13-15-21-23- 

The sets W, and R are the same as for Example 2, and the P-positions for the 
game are also the same. 

4.5. {2,4, 7} 

This is the only SG-sequence whose period does not start at 0. The 
reduced graph on the set V, = (4, 5, 7, 10, 13,...,} has a single edge joining 7 
to 5. We may take R ’ = {4, 10, 13 ,..., ] and then the sets Q, and Q, are as 
stated for { 1, 2, 6). 

4.6. {2,5,7} and Supersets with the Same SG-Sequence 

EXAMPLE 1. {2,5,7}. The reduced graph is 

5 - 7 - 9 -11-18-20-27-29-31-33-40-42- 

8 17-19-21 30 39-41-43 
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The sets W, are W, = (5, 7,9, ll,..., }, W, = {8}, W, = { 17, 19,21},..., and R 
is empty, leading to the simplified description of Q, and Q, found in 
Theorem 3. Supersets of {2,5,7} with the same SG-sequence do not affect 
the set W, materially, but may change the other Wi. 

EXAMPLE 2. 12, 5, 7, 1 1 }. Except for W, the reduced graph is 

The terminal 2s are 8, 17, 39 ,..., each forming its own set Wi. Therefore we 
may let R’ = { 8, 17, 19, 21, 30 ,..., } and the P-positions are 

Q, = {x: g(x) = 1 and x has no components in R’}, 

Q, = {x: g(x) = 0 and x has at least one component in R’ other than 
a single annihilable pair of R’}. 

EXAMPLE 3. {2,5,7,20}. Except for W, the reduced graph is 

8 17 

There is one new big W, = { 17, 19, 21, 39, 41, 43 ,..., } treated like { 1, 3, 4, 
61. 

EXAMPLE 4. {2, 5, 7, 24}. Except for W, the reduced graph is 

8 

the new joined piece is now treated like { 1, 3, 4, 8}. 

EXAMPLE 5. {2, 5, 7, 33}. Except for W, the reduced graph is 
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There are three pieces. Two of them, beginning with 8 and with 30 are 
treated like { 2, 5, 7, 1 1 }. The third is 

giving rise to a W, = { 17, 19, 21, 52). This and W, are the only Wi to 
consist of more than one element. 

4.7. { 1,4,6, 7) and Supersets with the Same SG-sequence 
The reduced graph for the set ( 1,4,6, 7) is 

m T-b/--b 
4 7 - 8 - g 1.2 1.7 20 - 21 - 22 25 

there are many terminal 2s, namely, 4, 7, 17, 20, 30, 33 ,..., but each forms its 
own set Wi. Therefore, we may take R’ = R U UWi = V, , and P-positions 
may be described as 

Q, = {x: g(x) = 1 and all components are SG-OS or 1s }, 

Q, = {x: g(x) = 0 and at least one SG-2 or SG-3 other than a single 
annihilable pair }. 

The various supersets of ( 1,4,6,7} with the same SG-sequence have quite 
different reduced graphs, but it is not difficult to see they all have the same 
P-positions, with the understanding that the definition of an annihilable pair 
may change. The reason is that it is impossible to create an SG-3 whose only 
follower in the reduced graph is a terminal 2. Therefore, each Wi must 
consist of a single element. 

4.8. {2,5,6, 7} and Supersets with the Same SG-Sequence 
The reduced graph for the set { 2, 5, 6, 7} is 

5 - 7 - 9 -11-17-19-21-23-29-31-33-35- 

blO/ k22’ 1;‘234/ 

The terminal 2s generate W, = (5, 7, 9, 11, 17, 19 ,..., ), W,= {8}, 
w, = {20},..., with R = { 10, 22, 34,...,}. If we define R’ = R U W, U W, en., 
then 

Q, = {x: g(x) = 1 and x has no components in R’}, 
Q, = {x: g(x) = 0 and x has at least one component in R’ other than 

a single element of { 10, 22, 34,...,} or a single annihilable pair 
in R’). 
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The various supersets of {2, 5, 6, 7) with the same SG-sequence may have 
different graphs with a different set of terminal 2s and a different R. 
However, the description given above for Q, and Q, still holds with the 
understanding that the definition of an annihilable pair may change. For 
example, the reduced graph for (2, 5, 6, 7, 10) differs from the above signifi- 
cantly only in that there are now edges from 20 to 10, from 32 to 22, etc., 
thus giving ‘more possible annihilable pairs of R ‘. 

4.9. { 1, 3,4,6, 7) (and Similarly { 1,4,5,6, 7)) 

As an application of Theorem 3 to a game other than that given by S,, 
consider the subtraction set { 1, 3, 4, 6, 7). The SG-sequence is 

u:O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
g(u):0101232345 0 10 12 3 2 3 4 5 

with period 9. There is only one terminal 2, namely, 4, leading to W, = 14, 
5, 6, 7, 14, 15, 16, 17 ,..., }. On the other hand, no SG-4 has an SG-5 as a 
follower, so the sets W,, W, ,..., become { 8, 9}, { 18, 19) ,.... Since g(x) = 0 or 
1 implies that x has an even number of components in W,, we may write 

Q = {x: g(x) = 1 and x has both or neither of the components in the 
sets {S, 9}, (18, 19} ,... }, 

Q, = {x: g(x) = 0 and x has exactly one component in at least one 
of the sets {8, 9}, 118, 19) ,... }. 

4.10. { 1, 2,4,6} and Others 

Of the remaining games with subtraction sets in Table I, namely, { 1, 2, 4, 
61, {l, 2, 4, 5, 61, 11, 2, 6, 71, (2, 3, 4, 71, {2, 3, 5, 71, (2, 4, 5, 71, (2, 4, 6, 
7}, and { 1, 2, 5, 6, 7}, all have SG-4s so that Theorem 4 does not apply, and 
all have two terminal 2s whose generated sets intersect so that Theorem 3 
does not apply. Here we look briefly at { 1, 2; 4, 6) and see that the solution 
must be of an entirely different nature than those given in Theorems 3 and 4. 

The reduced graph for { 1, 2, 4, 6) is 

Since a position consisting of a single vertex of this graph is N, we first look 
at pairs. It is not difficult to see that x = {vi, u2} is a P-position if and only 
if {vi, 02} is one of the following four types for integers k, > 0 and k, 2 0: 
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(1) {2+%, 2+&l, k,+k,, 
(2) {2+8k,, 5+8k,J, 
(3) 16 + 8k,, 6 + 8k,), k, # k,, 

(4) (5 + 8k,, 7 + 8k,}. 

The first three types have SG-value 0, but the last has SG-value 6, 
showing that some entirely different approach is needed to solve this game. 

For positions of the form x = { 1, oi, v,}, the P-positions may be described 
as 

(1) iA29 71, 
(2) {1,5+&v 5+8&j, k,#k,, 
(3) {1,6+8k,, 7+8k,}, k,#k,, k,#kZ+ 1, 

(4) {l, 10+8k,,7+8k,} (k,=k,) 

(5) (1, 2+8k,, 6+8k,}, k,#k,. 

This completely describes the P-positions when there are at most two 
counters on the vertices of SG-values 2 or greater. One can see that there 
also exist triplet P-positions with components in V, such as { 10, 14, IS} and 
(7, 14, 18}, unlike any of the solutions found above for graphs with all SG- 
values 5 or less. 

4.11. Other Games 

Theorem 4 has been fairly successful at solving the subtraction games of 
Table I whose SG-sequence contains no values greater than 3. It is quite 
possible that a complete theory for such games exists. In this section, we give 
without proof the solution to two such games not solved by Theorem 4, that 
may give an indication of the direction that, the complete theory will have to 
move. It would seem from these examples, however, that the complete theory 
is quite complex. 

EXAMPLE 1. {I, 3,4, 13,20}. The reduced graph is 

4 

The terminal 2s generate W, = 14, 5, 6, 18, 19, 20, 39) and W, = { 11, 12, 
13 }, but the graph does not satisfy Condition C 1 because of the annihilable 
pairs W, = {25, 26) and W,, = {32, 33). However, 
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THEOREM 5. For the game (1, 3,4, 13,201, let 

Q,= {x:g(x)= 1 andxEE(W,, W,, W,, W,)}, 

Q, = {x: g(x) = 0, x is not terminal and x % Q,} 

then P = Q, U Q,. 

The following lemma will help give a better description of the set Q,. 

LEMMA 3. Let x be non-terminal with SG-value 0. Then x -+ Q, if, and 
only if, 

(1) XEEW,, w,,..., W,), where W, consists of some ann~h~~abZe pair 
in R, or 

(2) for some 1 <j < 4 and v & Wj with a follower in Wj, 
X E E(W, )**S) Wj + {V},S**, Wd)* 

EXAMPLE 2. {2,4,5,6). The reduced graph is given in Example 3 of 
Section 4.4. The terminal 2s lead to the sets WI = {4,6} and W, = (5, 7, 13, 
15, 21,... }, so that R = { 12, 14, 20, 22 ,... }. In the solution given below, it is 
seen that a P-position with many elements of R must be in Q, rather than Q, 
as in Theorem 4, thus indicating that the general solution must be quite 
complex. 

THEOREM 6. Let 

Q, = {x: g(x) = 0 and x has an odd number of components in both 
W, and W, and no components in R }, 

Q1 = {x: g(x) = 1 and xff Q,}. 

Then P=Q,UQ,. 

A better idea of the set Q, is given by the following lemma. 

LEMMA 4. Let g(x) = 1. Then x + Q, if and only if 

(1) x has an odd number of components in W, + { 12) and W, and no 
components in { 14, 20, 22 ,... }, or 

(2) x has an odd number of components in W, and an even number of 
components in W, plus one component in R that can reach W,, or 

(3) x has an odd number of components in WI and W, plus an 
annihilable pair of R. 

In all examples solved when all SG-values are 3 or less, it has turned out 
to be the case that P = Q, U Q,, where Q, is a set of positions of SG-value 1 
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and Q, = {x: g(x) = 0 and x 4 Q,}. It is easy to conjecture that this should 
always be the case but difficult to see why. An equivalent conjecture is that 
all P-positions have SG-values zero or one. 
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