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Abstract

A decision-theoretic framework is described for sequential classification when the parameter

space is a finite partially ordered set. An example of an optimal strategy is then presented.

This example establishes that an asymptotically optimal class of experiment selection rules

is not necessarily optimal in the given decision-theoretic setting.
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1. Introduction.

Methods of choosing a sequence of experiments for sequential classification on finite

sets in order to determine the true state at the maximum asymptotic rate were presented

in Tatsuoka and Ferguson (2003). Application was made to the area of cognitively diag-

nostic educational testing, where the classification states form a partially ordered set (see
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Tatsuoka (2002)). Below, we treat the same problem in a decision-theoretic framework

where there is a cost of observation. This requires that classification must be made in a

finite time. It is shown that a class of rules, seen to be asymptotically optimal in Tatsuoka

and Ferguson (2003) when the classification states form a lattice, satisfy a conceptually

appealing property, here called ordered experiment selection. This property is related to

the idea of playing the winner in bandit problems. Finally, an example is given for which

we actually compute the optimal rule in the decision-theoretic sense, and it is seen not

satisfy the ordered experiment selection property.

Partially ordered sets (posets) are useful in statistical applications such as the group

testing problem originated by Dorfman (1943) (see also Ungar (1960), Sobel and Groll

(1959) and (1966), Yao and Hwang (1990), and Gastwirth and Johnson (1994)). Another

example of the use of partially ordered classification models is in cognitively diagnostic

educational testing (e.g. Tatsuoka (2002), Falmagne and Doignon (1988)). These models

may also be useful for neuropsychological assessment.

2. Statistical Formulation.

Let S denote the set of classification states, assumed to have at least two elements.

Let E represent a collection of experiments. If an experiment e ∈ E is used, then a random

variable, X, is observed whose distribution depends on e and on the true unknown state,

denoted by s ∈ S. We assume that for e ∈ E and state s ∈ S, the corresponding conditional

response distribution of X has some probability density f(x|e, s) with respect to a σ-finite

measure µe on a measurable space (Xe,Be). We also assume that the prior distribution of

the true state is known, π0, and consider the Bayes approach.

Let π0(j) denote the prior probability that j ∈ S is the true state. At the first stage, an

experiment e1 ∈ E is chosen and a random variable X1 having density f(x|e1 , s) is observed.

The posterior distribution on the parameter space, denoted by π1(j), is proportional to

the prior times the likelihood, that is, π1(j) ∝ π0(j)f(x1 |e1, j), where x1 represents the
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observed value of X1. Inductively, at stage n for n > 1, conditionally on having chosen

experiments e1, e2,. . . , en−1, and having observed X1 = x1,X2 = x2, . . . ,Xn−1 = xn−1,

an experiment en ∈ E is chosen and Xn with density f(x|en, s) is observed. The posterior

distribution then becomes

πn(j) ∝ π0(j)
n∏

i=1

f(xi|ei, j).

The posterior probability distribution on S at stage n will be denoted by πn.

We assume that (S,≤) is a partially ordered set, and that experiments are identified

with states in S as follows. If X represents the response random variable, then the density

of X for a given experiment e ∈ S and true state s ∈ S is given by

fX(x|e, s) =
{

f(x) if e ≤ s
g(x) otherwise. (1)

In the educational application, the interpretation given to (1) is as follows. For states j

and k in S, j ≤ k means that a subject in state k has all the relevant knowledge that a

subject in state j has. For each state e ∈ S, experiments can be designed so that subjects

in any state k ≥ e have response distribution f(x) while those in other states have response

distribution g(x).

In the group testing problem, we are given a set of N objects each of which may be

either defective or nondefective. The set of classification states consists of the 2N possible

subsets of objects. These subsets can be viewed as partially ordered through inclusion. A

Bayesian formulation of the group testing problem can be treated using (1) by considering

the true state, s, as the set of non-defective objects. An experiment, e is just a subset of

the objects. The outcome has one distribution if e ⊆ s (no defectives in e) and another if

e �⊆ s (at least one defective in e). By identifying e ⊆ s with e ≤ s, (1) follows.

If S has a bottom element 0̂ (i.e. 0̂ ≤ j, all j ∈ S), then the experiment e = 0̂ gives no

information since all states in S will have the same response distribution f . Thus, when 0̂

exists, we take E = S\{0̂} as the set of experiments. Otherwise, let E = S. We assume f

and g are not identical distributions and not mutually singular.
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3. A Class of Experiment Selection Procedures.

As described in Tatsuoka and Ferguson (2003), an appealing class of experiment se-

lection rules can be described which depend on the quantity

mn(e) =
∑
j≥e

πn(j).

For example, the halving algorithm chooses that experiment e at stage n + 1 for which

mn(e) is closest to 1/2. Such an experiment splits the state space into two subsets with

different response distributions, which have as close as possible to equal probabilities.

We define a class of experiment selection procedures U . Let experiment selection

procedures in U be those that choose e ∈ E at stage n to maximize U(mn(e)) for some

continuous function U , defined on [0, 1], such that (i) U(0) = U(1) = 0, (ii) U strictly

unimodal in (0,1), and (iii) there exist numbers 0 < k0 < k′
0 < ∞ and 0 < k1 < k′

1 < ∞

such that

k0x < U(x) < k′
0x

k1(1 − x) < U(x) < k′
1(1 − x)

for all x sufficiently close to 0

for all x sufficiently close to 1.

We take U to be the class of all such selection procedures. The halving algorithm, for

example, is a member of U associated with the function U(x) = min{x, 1−x}. A procedure

minimizing Shannon entropy one step ahead also satisfies the conditions for belonging to

U (see Tatsuoka and Ferguson (2003)). This class of heuristics shares some nice properties.

In particular, rules in U attain the optimal rate of convergence of the posterior probability

of the true state to one when S is a lattice. Recall that a lattice is defined to be a poset

such that any two elements have both a unique least upper bound and a unique greatest

lower bound (cf. Davey and Priestly (2002)). Note that S is a lattice for the group testing

problem. Also, these algorithms are computationally simple. However, use of this class of

heuristics does not necessarily lead to optimal experiment selection in a decision-theoretic

framework, as Example 1 of Section 6 demonstrates.
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4. Decision-Theoretic Formulation.

We use a standard Bayesian decision-theoretic formulation (cf. Ferguson (1967)). The

parameter space of classification states and the set of terminal actions are both taken to

be the finite poset S. Action j ∈ S denotes that the subject is classified into state j. The

loss is taken to be 0-1 plus a constant cost of observation, and is written

L(s, j, n) =
{

0 + cn if j = s
1 + cn otherwise,

where s is the true state in S, j is the action of choosing state j, n is the number of

observations and c > 0 is the cost per observation.

Rules that incorporate an experiment selection procedure as well as the stopping and

terminal decision rules will be called strategies. When stopping occurs, the Bayes terminal

decision rule that chooses the state with the largest posterior probability will be used. Let

N denote the stopping time and let J denote the action taken after stopping. The risk of

a strategy δ when s is the true state is given by

R(s, δ) = Es[L(s, J,N)|δ].

The Bayesian decision-theoretic problem then is to find strategies that minimize the Bayes

risk

r(π0, δ) =
∑
i∈S

R(i, δ) · π0(i).

5. Ordered Experiment Selection.

In bandit problems, the property of play-the-winner says that under certain conditions

if it is optimal to play an arm and it produces a winner, it is optimal to play the same arm

again (see Berry and Fristedt (1985), for example). An analogous concept for this problem

is defined below.
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Definition. An procedure is said to have the ordered experiment selection property if, for

any stage n, given that en = e and f(Xn) > g(Xn) (respectively f(Xn) < g(Xn)), then

en+1 �< e (respectively e �< en+1).

We expect good rules to have this property. Suppose it is good to use e at stage n.

If we use e, then an observation Xn with f(Xn) > g(Xn) lends support to the hypothesis

that the student has at least the relevant knowledge of state e. Why then would we use an

experiment to see if the student has the relevant knowledge of some state j < e? Similarly,

an observation Xn with f(Xn) < g(Xn) lends support to the hypothesis that the student

doesn’t have the relevant knowledge of state e. Why then would it be good to test to see

if the student has even more knowledge?

In the group testing problem, a related idea is that of nested in Sobel and Groll (1959)

(see also Yao and Hwang (1990)). At stage n, suppose that f and g are mutually singular,

and that a defective is present in an experiment e (that is, suppose that 0 = f(Xn) <

g(Xn)). An experiment selection rule that is nested would require that the next stage

experiment consist of a subset of objects from those pooled at stage n (i.e. that en+1 < e).

The ordered experiment selection property only requires en+1 �> e, and so it is not as

restrictive.

We first show that procedures in U have the ordered experiment selection property.

Because of the possibility of ties in achieving the maximum of U(mn(e)), there may exist

a choice of experiments for a given U ∈ U that does not satisfy the property. We can

say, however, that for a given U there exists an experiment selection that does satisfy the

property. We prefer, instead, to add a condition satisfied in the main applications under

which all procedures in U have the ordered experiment selection property. This condition

is equivalent to the condition that πn(j) > 0 a.s. for all j ∈ S and all n = 0, 1, . . ..

Theorem 1. If π0(j) > 0 for all j ∈ S and 0 < f(x)/g(x) < ∞ for almost all x (dµ), then

every procedure in U has the ordered experiment selection property.
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6. An Example of an Optimal Strategy.

Recall the group-testing problem, where few optimality results exist. In this section,

an optimal strategy is characterized. Surprisingly, the optimal rule may not always satisfy

the ordered experiment selection property. Consider the following counterexample.

Example 1. Consider the poset of Figure 1, and assume that f and g are densities for

Bernoulli random variables, with respective parameters pu = .9 and pl = .1. Let c = .04.

As the prior, we take π0(A) = .75/(1 + ε), π0(1̂) = .25/(1 + ε), π0(B) = ε/(1 + ε), and

π0(0̂) = 0, where ε is a small positive number. Note that the only reasonable choices

of experiment are ones associated with 1̂ or B, since the only separation of interest is

between A and 1̂. Define the strategy δ1̂B to be the strategy that alternates forever

between experiments 1̂ and B starting with 1̂, except that it stops and classifies to A if

there is a failure using 1̂ and stops and classifies to 1̂ if there a success using B. In the

appendix it is shown that δ1̂B is the unique optimal strategy for all ε sufficiently small.

However, δ1̂B does not have the ordered experiment selection property. If an experiment

1̂ is a success, it is followed by experiment B, and B < 1̂. Hence an optimal rule does not

necessarily have this property!

0̂

1̂

A B

Figure 1

This example is counter-intuitive to the strategy of trying to build the largest finishing

posterior probability value, which would require that the experiment choices be reversed

(alternating between B and 1̂ starting with B). This shows how the cost of observation can
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override this consideration. In general, however, it is expected that ordered experiment

selection can perform quite reasonably.

7. Proofs.

Proof of Theorem 1. Consider an experiment selection rule in U , let U denote its

associated function and suppose e ∈ E maximizes U(mn(e)). Then, experiment en+1 = e

is used at stage n + 1 and Xn+1 is observed. Suppose Xn+1 = x.

First consider the case f(x) > g(x). We are to show that U(mn+1(j)) is not maximized

by any j < e. We do this by showing U(mn+1(j)) < U(mn+1(e)) for all j < e. Since

f(x) > g(x), we have πn+1(j) > πn(j) for all j ≥ e, and πn+1(j) < πn(j) for all other

j. In particular, mn+1(e) > mn(e). Moreover, for all j < e we have mn+1(j) ≥ mn(j),

because 1 − mn+1(j) =
∑

i�≥j πn+1(i) ≤
∑

i�≥j πn(i) = 1 − mn(j). In addition, since we

are assuming that πn(j) > 0 for all n and j, we have for j < e that mn(j) > mn(e) and

mn+1(j) > mn+1(e).

Since e gives the maximum value of U(mn(e)) and mn(j) > mn(e), mn(j) must be on

the downward sloping part of U . If mn+1(e) is also on the downward sloping part of U , we

automatically have U(mn+1(j)) < U(mn+1(e)) for all j < e since mn+1(e) < mn+1(j). If

mn+1(e) is on the upward sloping part of U , then U(mn+1(e)) > U(mn(e)) > U(mn(j)) ≤

U(mn+1(j)). In all cases, U(mn+1(j)) < U(mn+1(e)) for all j < e, as was to be proved.

A similar argument shows that for the case f(x) < g(x), U(mn+1(e)) > U(mn+1(j))

for all j > e.

Proof of Example 1. Let us denote the prior probability as π0 = (π0(A), π0(1̂), π0(B)).

Lemma 1. There exists a number, ε0 (ε0 = 1/288 will do), such that for all 0 < ε < ε0,

(1) if π0 ∝ (.75, .25, ε) or π0 ∝ (.25, .75, ε), then it is optimal to take at least one

observation,
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(2) if π0 ∝ (.75, .25, ε) and a failure on 1̂ or B occurs, then it is optimal to stop and

classify to A, and

(3) if π0 ∝ (.25, .75, ε) and a success on 1̂ or B occurs, then it is optimal to stop and

classify to 1̂.

Proof. (1) follows by considering the one-stage look-ahead rule. Consider (2) when

experiment 1̂ is used (the other statements are proved similarly). If failure is observed, the

posterior probability is proportional to (.75(.9), (.25)(.1), ε(.1)) = (.675, .025, .9ε). Stopping

and classifying to A incurs only the misclassification cost, (.025+.9ε)/(.7+.9ε). Continuing

costs at least c = .04. The former is less than the latter if ε < 1/288.

Lemma 2. If π0 ∝ (.75, .25, ε), then for the posterior π1 we have

π1 ∝ (.25, .75, ε/3)

π1 ∝ (.25, .75, 3ε)

π1 ∝ (.75, .25, ε/9)

π1 ∝ (.75, .25, 9ε)

given success on 1̂

given success on B

given success on A

given failure on A

If π0 ∝ (.25, .75, ε), then for the posterior π1 we have

π1 ∝ (.75, .25, 3ε)

π1 ∝ (.75, .25, ε/3)

π1 ∝ (.25, .75, ε/9)

π1 ∝ (.25, .75, 9ε)

given failure on 1̂

given failure on B

given success on A

given failure on A

It is sufficient to restrict attention to strategies that, given the selection rules, employ

the optimal Bayes stopping and classification rules. From these two lemmas we may

conclude that if π0 ∝ (.75, .25, ε) with ε < ε0/9M , an optimal strategy will take at least M

observations unless we get a failure on 1̂ or B when πn(A) ≈ .75 (resp. success on 1̂ or B

when πn(1̂) ≈ .75), in which case we stop and classify to A (resp. 1̂). Let us denote this

class of strategies by DM .
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Lemma 3. For π0 ∝ (.75, .25, ε), and for all δ ∈ DM ,

r(π0 , δ) ≥
c

1 + ε

[
(1 − (.3)M )

.7
+ ε

(1 − (.1)M )
.9

]
.

Proof. The Bayes risk is at least c · E(min{N,M}) where N is the stopping time of the

strategy. This is minimized by stopping as soon as possible, which is achieved using only

experiments 1̂ and B. Conditional on A or 1̂ being true, N has a geometric distribution

with success probability (3/4).9 + (1/4).1 = .7, and E(min{N,M}) = (1− (.3)M )/.7 is an

easy calculation. If B is true, N is stochastically smallest if 1̂ and B are used repeatedly

in that order, in which case N has a geometric distribution with success probability .9,

and EB(min{N,M}) = (1 − (.1)M )/.9. Combining these gives the result.

Lemma 4. If π0 ∝ (.75, .25, ε), then for all ε sufficiently small and any strategy δ that

begins with experiment A, r(π0 , δ) > r(π0, δ1̂B).

Proof. A straight-forward computation gives

r(π0 , δ1̂B) =
(1/28) + ε

1 + ε
+

c

1 + ε

[
1
.7

+ ε
1
.9

]
.

For ε sufficiently small and any strategy that starts with A, there is an immediate

cost of c and a subsequent cost of almost c/.7. Since 1/28 = .035 < c, the strategy δ1̂B is

better.

In fact, we can conclude that there is an M0 such that if ε < ε0/9M+M0, then δ1̂B is

better than any strategy that uses experiment A in any of the first M stages. Let D∗
M+M0

denote the subset of DM+M0 that uses only 1̂ and B as experiments in the first M stages.

Note that δ1̂B is optimal if ε = 0 (It is a SPRT though not uniquely). Therefore, for any

other strategy δ,

R(A, δ) · π0(A) + R(1̂, δ) · π0(1̂) ≥ R(A, δ1̂B) · π0(A) + R(1̂, δ1̂B) · π0(1̂),

since this is true when dividing through by π0(A) + π0(1̂) = 1 − ε. So in comparing

strategies in D∗
M+M0

, we need only compare R(B, δ).
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Lemma 5. For all strategies δ in D∗
M+M0

,

R(B, δ) ≥ 1 − (.9)M+1 + c(1 − (.1)M )/.9.

Proof. Let N denote the stopping time of δ. Then, R(B, δ) = PB(misclassification) +

cEB(N) ≥ PB(N ≤ M+1)+cEB min{N,M}, since if we stop before stage M+1 we classify

to A or 1̂. The probability PB(N ≤ M +1) is minimized by stopping as slowly as possible,

and is achieved using B and 1̂ repeatedly in that order, so that PB(N ≤ M + 1) ≥ 1 −

(.9)M+1. The expectation is minimized by stopping as quickly as possible, achieved using

1̂ and B repeatedly in that order, so that as in Lemma 3, E min{N,M} ≥ (1− (.1)M )/.9.

Lemma 6. If π0 ∝ (.75, .25, ε), then δ1̂B is optimal for all sufficiently small ε.

Proof. Since R(B, δ1̂B) = 1 + c/.9, take M very large so that the result of lemma 5 is

within some ε′ of R(B, δ1̂B). If δ in D∗
M+M0

starts with experiment B, then R(B, δ) ≥

c+ .1+ .9(1+c/.9−ε′) > R(B, δ1̂B), and hence r(π0 , δ) > r(π0, δ1̂B). Thus for ε sufficiently

small, r(π0, δ) > r(π0 , δ1̂B) for any strategy δ that starts with A or B. Similarly, if δ begins

with 1̂1̂ or 1̂A, it is not as good as δ1̂B. Now note that use of δ1̂B reduces ε at every step

of continuation. If any strategy δ differs from δ1̂B there is a first time it differs, but then

ε is even smaller so that δ1̂B is better.
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