Models for the Game of Liar’s Dice

Christopher P. Ferguson and Thomas S. Ferguson

Abstract: An explicit multimove game of competition where a player must
occasionally lie and the other must detect the lie is solved.

1. Introduction: Models of competition between two decision makers, where one
decision maker must occasionally lie and the other must attempt to detect the lie,
were described in a nonsequential setting in T. S. Ferguson (1970). Here, several
analogous sequential models directly related to liar’s dice are treated, in which the
decision makers alternately exchange roles. The bigger the successful lie at one
stage, the more difficult it is for the opponent at the next stage.

The 1970 model is as follows. Player I observes z chosen from a uniform
distribution on (0, 1), and claims that he observes y € (0,1) where y > z. Player
II, not knowing z, is informed of y and must accept or challenge I's claim. If II
challenges, I wins 1 from II if y = z and wins nothing otherwise. If II accepts,
then I wins b(z,y) from II, where b(z,y) is a known function of z and y. The
value and optimal strategies for the players were found for this game under certain
monotonicity and differentiability conditions on b(z, y). As examples, the functions
b(z,y) = y, and b(z,y) = (y — z)/(1 — z) were solved explicitly.

No sequential models were treated in Ferguson (1970), although hope was
expressed that the results would have application to such models. We quote: “Use
of a general b(z, y) allows treatment of situations wherein the basic game is replayed
with the roles of the players reversed and future = and y dependent upon past z and
y.”” This may be true in principle, but difficult to carry out in practice.

In this paper, we treat several sequential models directly, all models of the game
of liar’s dice as described in Bell (1969), Frey (1975) or Scarne (1980). In section 2,
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a one die version of the game is solved. This is a finite game with at most 6 rounds
of play, but with at most 2 rounds under optimal play. In section 3, a continuous
version is treated which models liar’s dice in which all dice must be rerolled in each
round. Although actually an infinite game, under optimal play there is at most 2
rounds. This makes it the game b(z,y) = y in the Ferguson (1970) model, and it
has the same solution as given there. In section 4, we treat a version of the game
most closely resembling the game of liar’s dice as it is played, the seven category
game. In section 5, we treat a continuous version modeling liar’s dice in which
a player may choose which dice to reroll. We call this the continuous improvable
case. It is a true stochastic game in the sense of Shapley (1953) (but with continuous
state space and some zero stop probabilities) with unbounded length of play under
optimal strategies. In section 6, we allow a player to hide from his opponent which
of the dice he rerolls. We note that it is advantageous occasionally to try deliberately
to get a poor combination of the dice.

2. The Liar’s Die Game: As an introductory example for this class of games,
we consider the game in which there is just one die. Player I rolls the die and
observes the outcome, a random integer X (1) taking the values from 1 to 6 with
equal probabilities. Then, based on X (1), player I chooses an integer y(1) between
1 and 6 inclusive and makes the claim that the X(1) is (at least) y(1). Then, player
II announces whether he doubts or believes I's claim. If II doubts I's claim, then
Il wins if X(1) < y(1), and I wins otherwise. If II believes, then the game is
played over with the roles of the players reversed. Player II rolls the die but this
time II must claim a number that is higher than the number previously claimed by
his opponent. Thus, II observes a random integer X(2) between 1 and 6, chooses
a number y(2) > y(1), and claims that X(2) > y(2). Play proceeds similarly in
subsequent rounds. If either player claims 6, then the opponent may as well doubt
the claim, since that gives the only possible way to win.

We take the payoff to be 1 if player I wins and 0 if player II wins; this is so that
the value of the game will represent player I’s probability of win under optimal play
by both players. The rules allow the game to be repeated at most six rounds, but
under optimal play there are at most two rounds as the following theorem indicates.

Theorem 1: (i) The value of the liar’s dic game is 41/60.

(i) An optimal strategy for player I is as follows. If X(1) > 3, then claim
y(1) = X(1). If X(1) = 2, then claim y(1) = 2 with probability 3/10, and
claim y(1) = 3 otherwise. If X(1) = 1, then claim y(1) = 3 with probability
3/10, y(1) = 4 with probability 5/10, and y(1) = 5 with probability 2/10. On
the second round (if any), doubt any claim by II.
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(iii) An optimal strategy for player IT is as follows. If y(1) = y, then doubt Is claim
with probability p(y), where p(1) = 0, p(2) = 0, p(3) = 1/3, p(4) = 1/2,
p(5) = 3/5, p(6) = 1. On the second round (if any), claim the minimum of
X(2) and y(1) + 1.

Proof: Suppose I uses the indicated strategy. What is II's best reply? If II hears
y(1) = y, he must doubt if y = 6; if y = 5, then the probability that X (1) = 5 is
P(X(1) = 5[y(1) = 5) = P(X(1) = 5,y(1) = 5)/P(y(1) = 5) = (1/6)/((1/6) +
(1/6)(2/10)) = 5/6; if y = 4, then P(X (1) = 4|y(1) = 4) = 2/3; if y = 3, then
P(X(1) = 3]y(1) = 3) = (1/6)/((1/6) + (1/6)(3/10) + (1/6)(7/10)) = 1/2.

If IT doubts when y(1) = 5, he wins with probability 1/6. If II believes, he wins
if and only if he rolls a six (since I is going to doubt whatever he does), so here
too he wins with probability 1/6. In other words, II is indifferent whether to doubt
or believe. Similarly, if y(1) = 4, II wins with probability 1/3, whether he doubts
or believes, and if y(1) = 3, II wins with probability 1/2, whether he doubts or
believes. If y(2) = 2, clearly II should believe since I is telling the truth, and then
since he knows I is going to doubt his claim, which must be at least 3, he should
tell the truth if he can and so will win with probability 2/3. All in all, II may
as well doubt any y(1) > 2 and believe y(1) = 2, giving I a probability of win
= 2/3 + (1/6)(3/10)(1/3) = 41/60, as claimed.

Now suppose II uses the indicated strategy. What is I's best counter strategy?
Suppose I sees X (1) = 1 or 2; if he claims 3, 4, or 5, he wins with probability
(2/3)(1/2) = 1/3,(1/2)(2/3) = 1/3, or (2/5)(5/6) = 1/3 resp.; if he claims 6, he
loses with probability 1; if he claims 2 (1 is worse), he wins with probability 1 /3 also.
If I sees X(1) = 3,4,5, or 6, his best policy is honesty, and he wins with probability
(1/3)+(2/3)(1/2) = 2/3, (1/2)+ (1/2)(2/3) = 5/6, (3/5) + (2/5)(5/6) = 14/15,
or 1 resp. I's overall probability of winning is therefore (1/6)(1/3 + 1/3 + 2/3 +
5/6 + 14/15 + 1) = 41/60, as claimed. &

3. The Continuous Liar's Dice Game: Player I observes the outcome of a
random variable X(1) having a continuous distribution function, F(z). He then
chooses y(1) and claims that X (1) > y(1). Player II then must either challenge or
accept IT’s claim. If he challenges, Player I wins if and only if he was telling the truth.
If IT accepts, then the game is played again with the roles of the players reversed; II
observes X (2) from F(z), independent of X(1), and claims X(2) > y(2), but this
time y(2) must be larger than y(1). The game may be repeated indefinitely, with
the players reversing roles, and the new call always greater than the previous call.
A closely related game was analyzed in [3] in which the rules have been altered
so that if the second round is reached, player I wins if and only if X(2) < y(1).
One may think of this as the game in which if the second round is reached, I must
challenge II's call. It turns out that this is an optimal strategy for I on the second
round so that the value found in [3] is also the value of the game here, namely
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1 — 1/e. The optimal strategies found there are also optimal first round strategies
here, but we give a different (nonrandomized) optimal first round strategy for I in
the theorem below.

Since the game depends only on the relative sizes of the X (n) and not on their
actual values, we may and do assume without loss of generality that F(z) is the
uniform distribution on the interval [0, 1].

Theorem 2: The value of the Continuous Liar’s Dice Game is 1 — 1/e. Optimal
for L is the strategy: if X (1) > 1/, then call y(1) = X(1); if X(1) < 1/, then call
y(1) where y(1) — 1 —In(y(1)) = X(1); on the second round, challenge any call of
IL. Optimal for II is the strategy: accept any y(1) < 1/e; accept a call of y(1) > 1/e
with probability (1/e)/y(1); on the second round, use I's first round strategy except
that if it turns out y(2) < y(1), put y(2) anywhere above y(1); on the third round,
challenge any call of L.

Proof: Suppose I uses the indicated strategy, and II hears a call of y(1) = y. What
is the probability I is telling the truth? Let us compute the density of the random
quantity Y = y(1) given by Is strategy. This is a change of variable problem with
a 2-to-1 transformation. The density of Y is therefore the sum of the two pieces
corresponding to 0 < z < 1/e and 1/e < z < 1. The contribution of the first piece
is |dz/dy| where z = y — 1 — In(y), namely, |1 — 1/y| = 1/y — 1. The contribution
of the second is 1, since the transformation is = y. On hearing y(1) = y, the
probability that I is telling the truth is therefore the probability that the source is
the second contribution, namely, 1/(1 + (1/y — 1)) = y. If II challenges, then I
wins with probability y, but if II accepts, then since I is going to challenge anything
II claims, I will win if and only if X(2) < y, which also occurs with probability
y. Thus it makes no difference what II does against I's strategy; II may as well
challenge everything. The probability I wins is then 1 — 1/e.

Now suppose II uses his indicated strategy, and I observes a value X () =&
What should I claim? If I claims y > 1/e, y > =z, then I wins iff II accepts and
then loses; against II’s second round strategy, the best I can do is to challenge any
claim of 1I, so I wins with probability at most ((1/e)/y)y = 1/e. If z < 1/e and
I claims y > z and y < 1/e, then II accepts and since on the next round he uses
I’s original strategy, II wins with probability at least 1 — 1/e; so again I wins with
probability at most 1/e. If z < 1/e and I calls y = =, I wins with probability
at most 1/e. If z > 1/e and I calls y = z, then I wins with probability at most
(1—p(y)) +p(y)y where p(y) = (1/e)/y. Since this is greater than 1/e, I should tell
the truth if = > 1/e, and it is immaterial whether I lies or tells the truth if z < 1/e.
This strategy holds I's probability of win down to
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4. Seven-Category Liar’s Dice: In this section, we consider liar’s dice as it is
usually played, allowing a player who accepts a call to leave some of the dice on
the table and to roll only those dice that he wishes. The dice not rolled are left in
view of his opponent. We consider the realistic case in which there are five dice and
to avoid cumbersome details, we restrict attention to seven-category liar’s dice, in
which if a player accepts a claim by an opponent he must then call a higher category.
The seven categories in decreasing order are taken to be 5-of-a-kind, 4-of-a-kind,
full house, 3-of-a-kind, two pairs, one pair, and 5 different. Note that a straight is
considered as a low hand. Straights are relatively infrequent in games in which it
is allowed and it does not pay to try to draw to it. The probabilities of these seven
categories are computed in Epstein (1967) and listed in the following table.

Category # rolls probability
1. 5 different 720 .0926

2. Onc pair 3600 4629

3. Two pairs 1800 2315

4. 3-of-a-kind 1200 1543

5. Full house 300 0386

6. 4-of-a-kind 150 0193

7. 5-of-a-kind 6 .0008
Total 7776 1.0000

The rules of seven-category liar’s dice are as follows. Player I rolls five dice and
claims the dice resulted in one of the seven categories above. Player II, not knowing
the outcome of the dice must accept or challenge I's claim. If I challenges I's claim,
then I wins iff the dice are in the category claimed by 1. If II accepts I’s claim, the
dice are shown to II and the game is repeated with the roles of the players reversed,
but this time II may leave some of the dice as they are and roll the rest. The dice
not rolled are shown to the opponent and only the new dice are hidden. Now II must
claim a higher category than was claimed previously, and it is I’s turn to accept or
challenge II. Play continues in this fashion until one of the players challenges the
other. If a player ever claims the 5-of-a-kind category, it may be assumed that the
opponent will challenge, since there is no higher category to call.

This game is less in player I’s favor than the game in which all five dice must be
rerolled each time a player challenges. It turns out that using optimal strategies, the
game never lasts more than three rounds. The critical case occurs when on the first
round I wruthfully claims category 2 and II accepts the claim. We denote the game
continuing from this point by G(2,2) and discuss its solution first.

Suppose then that the last roll resulted in one pair. It is clear that the roller should
leave the pair down and roll the remaining three dice. Using such a strategy, the
probabilities of improvement to other categories are:
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Category # rolls probability
2. One pair 60 2778

3. Two pairs 60 2778

4. 3-of-a-kind 60 2778

5. Full house 20 .0926

6. 4-of-a-kind 15 0694

7. 5-of-a-kind 1 0046
Total 216 1.0000

The roller should be truthful if he improves, that is, if he rolls one of the categories
3 through 7. If he does not improve, he should claim category y with probability
Q(y), where
Q(6) = 9/215 = .0419
Q(5) = 11/100 = .1100 (4.1)
Q(4) = 8/15 = .5333
Q(3) = 1— the above = .3148

The main property of this strategy is that the second player is indifferent as to what
he should do if he hears a 4, 5 or 6. For example, suppose he hears a 6; then the
probability the roller has 4-of-a-kind is (15/216)/(15/216 + (60/216)(9/215)) =
215/251. If he challenges, he wins with probability 36/251; if he accepts, he wins
only if he can roll 5-of-a-kind (since his opponent will surely challenge), which
happens with probability 1/6 if he has 4-of-a-kind and with probability 1 /216 if he
has a pair, and so with overall probability (215/251)(1/6) + (36/251)(1/216) =
36/251. Thus he is indifferent if he hears a 6, and similarly if he hears a 4 or a 5.1f
he hears a 3, he should accept and, since his opponent will challenge any claim he
makes, should lose with probability 120/216. His overall probability of losing may
be computed assuming he challenges 4,5,6 and 7 to be

(1+ 15 + 20 + 60) /216 + (120/216)(60/216) (1 + .3148) = .6473...  (4.2)

The roller can win with this probability at least. To see that this is the value of
G(2,2), we find the optimal strategy of the second player. The second player should
challenge a claim of y with probability p(y), where p(2) = p(3) = 0, p(7) = 1,
and p(4), p(5) and p(6) are chosen to make the roller indifferent concerning what
to call if he rolls a 2:

(1- p(4))(180/216) = (1 — p(5)) (200/216) (4.9)
= (1—p(6))(215/216) = 120/216
which gives p(4) = 1/3, p(5) = 2/5, and p(6) = 19/43. Since this guarantees the
second player that he loses with probability no more than (4.2), this must be the
value of the G(2, 2).
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Theorem 3: The value of seven-category liar’s dice is .55919... . I’s optimal
strategy is as follows. On the first round, if I rolls category 3,4,5,6 or 7, he claims
the truth; if I rolls category 1, he claims category 2; if I rolls category 2, he claims
category z with probability P(z), where

P(6) = 3/430 = .007

P(5) = 11/400 = .027

P(4) = 8/45 = .178

P(3) = 2/5 = .400

P(2) =1~ the above = .388

On the second round, I should challenge any claim by II unless I truthfully claimed
category 2 in the first round, in which case he should challenge a claim of y by II
with the probabilities p(y), associated with (4.3).

II’s optimal strategy is as follows. On the first round, IT should challenge a claim
of y by I with probability ¢(y) where ¢(1) =0, ¢(2) = 0, ¢(7) = 1, and ¢(3) to
q(6) are chosen to make I indifferent concerning what to call if he has category 2:

(1~ g(3))(120/216) = (1 - q(4))(180/216)
= (1 - ¢(5))(200/216)
= (1 - q(8))(215/216) = 1 — .6473

which gives ¢(3) = .3651, g(4) = .5768, ¢(5) = .6191, and ¢(6) = .6457. On the
second round, II should try to improve the roll except that with two pair he should
leave one pair and reroll three dice. Then, II should tell the truth if possible unless
he has accepted a truthful claim of 2 or 1. If he has accepted a truthful claim of 2,
he should use the @ of (4.1). If he has accepted a truthful claim of 1, he may use
I's strategy of the first round, since this never requires a claim of 1.

Sketch of proof: One may check that if I uses the indicated strategy,
then II is indifferent as whether to challenge a 3 4 5 or 6. Thus
assuming that II challenges 3 through 7, we find that the probability that I
wins is P(I rolls 1) P(II rolls 1 or 2) + P(I rolls 2 and calls 2)(1-val(G(2,2))) +
P(Irolls 3 through 7) = (720/7776)(4320/7776) + (3600,/7666)(.388)(1 —
.6473) + 3456/7776 = .55919... . If II uses his indicated strategy, one may
also check that I's indicated strategy is optimal against this. ¢
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5. Continuous Improvable Liar’s Dice: Player I starts as the roller. He observes
X(1) from a uniform distribution on the interval (0,1) and claims y(1) € (0,1).
Player II hearing y(1) but not knowing X (1) accepts or challenges. If II challenges,
he wins if X(1) < y(1) and loses otherwise. If he accepts, the game is continued
with the roles of the players reversed. This time, however, a number X (2) is chosen
from the uniform distribution on (X(1), 1), and the roller must claim a number
y(2) in the interval (y(1),1). This continues ad infinitum the game ending after
the first challenge, the roles of the players reversing after every acceptance, and
X(n+1) € U(X(n),1) and y(n + 1) € (y(n), 1) for all n. If the game continues
forever with neither player challenging, the game is declared a draw although, as
we shall see, the probability that this occurs under optimal play of either player is
zero. A change of location or scale does not change the problem, so we may as well
assume that each X(n) € U(0,1) and that the roller must choose y(n + 1) from
the interval (z(n), 1), where z(n) = (y(n) — X(n))/(1 — X(n)). Let us denote by
G(z) the basic game in which the roller observes X € U/(0,1) and must choose
y € (2,1). Let (z) denote the probability that I wins G(z) under optimal play by
both players. The original game is G(0), so the value of the original game is ¢(0).
We first present a few lemmas on ¢(z).

Lemma 1: (2) is nonincreasing in z, and p(2) < 1—z.

Proof: Suppose z' < z. Then, any strategy available to I in the game G(z2) is also
available to I in the game G(z'), and it guarantees him the same amount. Hence,
©(2') > o(z). Moreover, II can guarantee 1 — z by challenging any claim I may
make. Then I wins if and only if he tells the truth, which occurs with probability
PX>z)=1-z ¢

Lemma 2: Let V and W satisfy

V = (1-V)HV)/2 = 544658... (5.1)
W=1-V?/(1-V)=.348507...

Then o(z) >V for 0 < z < W. Player I can guarantee this amount by using the
strategy: if X = z, claim y = f(z) where

fle)=[z+V+V2(1-2)"WV]/(1+V) for0<z<W (5.2)
=z forW<z<1

Proof: Suppose z = 0. Clearly, II should accept a claim of y < V. Suppose II hears
aclaimof Y =y >V and that y = f(z) where 0 < z < W. Then the probability
that I is telling the truth is g(y), where

g(y) = P(X = y[Y =) = f'()/(f'(=) +1).
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If 11 challenges y, then P(I wins|Y = y) = g(y). If Il accepts y, then P(I wins|Y" =

y) = 9()(1 ~ (0)) + (1 - g(s))(1 — {(y — 2)/(1 - z))). Hence it s optimal for
II to challenge y if and only if

9(y) < 9(v)(1 = #(0)) + (1 - 9())(1 - ©((v — 5)/(1 - =)))
or, equivalently,
e(0)f'(2) < 1-o(ly —2)/(1— =)
Suppose ¢(0) < V. Then, using f'(z) = (f(z) — z)/((1 —2z)V) for 0< 2z < W,

2(0)f'(2) = ¢(0) (v — 2)/((1 - 2)V)
<(y-2)/(1-2)
<1-¢((y-2)/(1-2)
from Lemma 1. This implies it is optimal for II to accept a y < V and to challenge
a y >V, which gives
P(I wins) = (V — W)(1—¢(0)) + (1 - V)
=1-W — (V- W)p(0}.
= [V2 - 2V = 1)p(0))/(1- V) (5.3)
> p(Q)[V — (2V - 1)]/(1- V) = ¢(0).
But this indicates that I can guarantee himself more than the value of the game. This

contradiction shows that ¢(0) > V. Since I's strategy can be used for z < W to
guarantce the same amount, we also have p(z) >V for 0 < 2 < W. &

Lemma 3: p(z) >V for 0 < z < 1—V. Player I can guaranice this amount by
using the strategy: if X = z, claim y = f(z), where

f@) =z +V+V21-g)YV)/(1+V) for0<z <W, (5.4)
=Q1-V)z-W)/V+1-V for W<z<1-V
=z forl1-V<az<l.

Proof: Suppose z = 0 and II hears a claim of Y = y in (1 — V, V). Then either
Y =yor X =z where z is in (W,1— V) and f(z) = y, the probability of the
former being

PX=ylY =4) = F(&)/(f (&) +1) =1-V.
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Thus, if IT accepts I’s claim, then

P(Lwins|Y =y) = (1-V)(1-(0)) + V(1 - ¢((y — 2)/(1 ~ 2)))
S(A-V)1-V)+V(1-V)=1-V

since (y — z)/(1—z) = (2V — 1)/V = .16398..., independent of y, and from
Lemma 2, p(0) > V and o(.16398...) > V. If II challenges, then P(I wins|Y =
y) = 1 -V for all y, so Il may as well accept all y in (1 — V, V). Now follow
the rest of the proof of Lemma 2, the only change being that the first line of (5.3)
becomes

P(I wins) > (V — W)(1— ¢(0)) + (1 - V).

Since I's strategy can be used for all z < 1 — V, we have e(z) > V for all z in
(0,1-V). o

Theorem 4: The game G(z) has value ¢(z) = min{V, 1 — 2} where V satisfies
(5.1).

Case 1: If z < 1 — V, each player has an optimal strategy independent of z. The
roller has an optimal pure strategy: If X = z, claim y = f(z) where f is given by
(5.4). (I may better take advantage of poor play by II in G(z) by telling the truth
whenever X > maz{z, W}.) An optimal strategy for the challenger is to accept a
claim of y with probability p(y), where

p(y) =1forQ = Y < V, and (55)
=(1- )Y frv<y<i.

Case 2: If z > 1V, it is optimal for the challenger to challenge always, and for
the roller to claim y = f(X) provided y > z, and to claim any y > z otherwise.

Proof: First, suppose z > 1—V (Case 2). Player II can guarantee losing at most 1—z
by challenging always (Lemma 1). On the other hand, if player I claims y = f(X)
provided f(X) > z, then II would be indifferent between challenging and accepting
if it were known that f(X) > z; but since there is an additional chance that I is
lying, II may as well always challenge. Thus, I is guaranteed at least 1 — z, showing
p(z)=1-=z

Next, suppose z < 1 — V (Case 1). We have seen (Lemma 3) that the indicated
strategy for I guarantees him at least V.. Assume then that player II uses the strategy
p(y) of (5.5). We complete the proof by showing that II’s expected loss is at most
V. We find I’s best response to p(y).

Suppose I observes X = z < W. If I lies, he should announce that y in
(V,1) to achieve the maximum of U(y) = p(y)(1 — ¢((y — z)/(1 — z))). For
(y — z)/(1 —2z) > 1 -V, this becomes U(y) = p(y)(y — z)/(1 - z). Then
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since p'(y) = —p(y)/(y — £~*(v)), we find that U"(y) = p(y)(z — £~ (9))/((v -
f~1(y))(1— z)). Thus among y > z + (1 — z)(1— V), I’s return is maximized by
y = f(z) and the value of the return there is U(f(z)) > U(f(1)) = 1—V. Among
y < z+ (1—z)(1—V), the return is less than p(y)(1—V) < 1—V, so I's optimal
response is y = f(z). (Truth also gives 1 — o(0) <1-V.)

Suppose I observes W < z < V. Now lyingat y > z+ (1 —z)(1 - V) is
maximized at y = 1, with return equal to 1 — V. Truth also gives at most 1 —V as
does lying at y < z + (1 — z)(1 — V). So I's optimal responsc is y = 1.

Suppose I observes V' < z < 1. Truth returns (1 — p(z)) + p(z)(1 — ¢(0)) =
1 — p(z)e(0). Lying should be done at y = 1 with return 1 — V. Thus the optimal
return is maz{1 —V,1— p(z)p(0)}.

Combining these, the total optimal expected return to I is

/; Jﬂ(f(a”«))(f(x)—x)/(1-35)dﬁf-lr(V—"V)(1—V)+/V1 maz{1-V,1-p(z)p(0) }dz.

Since (f(z) — z)/(1 — z) = V f'(z), the first term is equal to V' fvl, p(y)dy. Since

©(0) > V, the third term is less than or cqual to f;(l ~ p(z)V)dz. Hence, I's
optimal expected return is bounded above by

val p(z)dw+(V—W)(1—V)+fvl(1—p(z)V)d:n = (V-W)(1-V)+(1-V) =V.

Since from Lemma 3, I can achieve this amount, II’s strategy is optimal. &

6. Liar’s Coins: In some liar’s dice games, the player who accepts a call and rerolls
some of the dice is allowed to hide from his opponent which dice are rerolled. This
allows the possibility for a player to deliberately try to achieve a low roll by rerolling
only those dice that make the roll good in hopes that the opponent will accept the
claim and have a hard time improving. We investigate the question of whether this
represents a reasonable strategy. To simplify the discussion, we replace poker-type
ordering of rolls by the ranking due to the total sum of the dice, and then to simplify
further, we replace the dice by coins. The resulting game is as follows.

There are n fair coins and Player I starts by tossing all coins and observing X(1),
the total number of heads, and claiming that he sees y(1) heads where y(1) > X(1).
Player II then challenges or accepts. If II challenges, the game ends in the usual
manner. If IT accepts, the roles of the players are reversed with II retossing any subset
of the coins he wishes. However, II does not show I which coins are retossed. Then,
II observes X (2) heads and claims that he sees y(2) heads where y(2) > X(2) and
y(2) > y(1). Play continues in like manner until one of the players challenges.

First we argue that when n is large it pays occasionally to ‘‘go-for-low’” by
rerolling all of the heads. Except for the first round when all coins must be tossed,
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the player with control of the coins should either toss all the heads to destroy the
hand, or all the tails to improve it; tossing any other subset of the coins is never
of any use. Let z denote the proportion of coins showing heads. By the central
limit theorem, if all tails are tossed, the proportion of heads after the toss will be
S+ :J:/ 2 + ¢, where € is a term of order 1 /\/H If all heads are tossed, then after
the toss there will be a proportion of £/2 + ¢ heads. To simplify things, we take
n so large that the ¢ term can be neglected entirely. Assume the controlling player
tosses all heads to destroy the hand, and claims .5 + z/2. If this claim is believed,
the believing player can improve the hand to at most .5 + z/4 and will be forced to
lie; the other player will win automatically by challenging the claim,

Now, we compute the value, v, of this game, the probability that the controlling
player wins under optimal play. The controlling player can either improve the hand
or destroy it, in either case claiming .5 + z/2. The other player can either believe
the claim or challenge it. This leads to a 2 x 2 matrix game. If the controlling player
destroys the hand, he will win if the claim is accepted and lose if it is challenged.
If the controlling player improves the hand and is challenged, again he wins. If he
improves the hand and is belicved, his opponent will win with probability v and so
he will win with probability 1 — v. This results in the following matrix.

accept challenge
improve 1-v 1
destroy 1 0

The value of this game is 1/(1 + v) which, equated to v, gives v = (v/5 — 1)/2 =
618.. ., the golden ratio, as the value. The optimal strategies are that the controlling
player should improve with probability v and destroy with probability 1 — v, and
his opponent should accept with probability v and challenge with probability 1 — v.
Since the first player must toss all the coins, the second player can believe all but
outrageous claims in the first round and become the controlling player for the next
round. Thus, under optimal play the first player wins with probability 1—v = .382...

This is the only game we treat that favors the second player.

Just how many coins are needed to exhibit the phenomenon of going-for-low? The
answer is three! Consider the liar’s coins game with n = 3. Let P(a, b) denote the
probability that the player controlling the coins (about to toss any subset) will win
under optimal play, given he has a heads and must claim more than b heads. Then,
it is straightforward to compute

P(2,2) = 1/2
P(1,2)=1/4
P(0,2) =1/8

P(0,1) =1/2.
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We now compute P(1,1). The controlling player will claim three heads if and only
if he has it, since his opponent is certain to challenge any claim of three heads. Thus,
the controlling player has two strategies, improve or destroy, in each case claiming
three heads if he has it and two heads otherwise; his opponent has two strategies
also, accept a claim of two heads or challenge it. We are led to the matrix game
below.

accept a two challenge
improve 1/4+(1-P(2,2))/2+(1-P(1,2))/4 3/4
destroy |_(1/2)(1-P(1,2))+(1f2}(1-P(0,2)) 0

= 11716 3/4
1316 0

The value of this game is P(1, 1) = 39/56. The controlling player should improve
with probability 13/14 and destroy with probability 1/14. His opponent should
accept a two with probability 6/7 and challenge it with probability 1/7.

Finally we can determine the best strategy for the first round and compute the
value of the game. Clearly if the first roll is a two or a three, the first player’s
claim is the same as his roll. He has a choice of lying schemes for outcomes of 0
and 1 however. He can either claim 1 when he has 0 and sometimes claim 2 when
he has 1, or claim 2 when he has 0 and sometimes claim 2 when he has 1. From
previous solutions it scems that the first strategy will be better, so we solve using
it and hope to show later that any change from it is damaging to his chance of
winning. Assuming this strategy, 2/3 of the time with a 1 he should claim a 2, and
the other 1/3 of the time he should claim a 1. With a 0 he should always claim a
1. The opponent should reject all claims of 3, accept a claim of 2 with probability
17/42, and accept all claims of 0 or 1. The final step is to demonstrate the validity
of our previous assumption on the first player’s strategy. This is done by showing
that claiming 2 with O heads gains nothing over claiming 1 head with 0. The value
of this game is 807/1344.
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