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On Sums of Graph Games with Last Player Losing')

By T. S. FERGUSON, Los Angeles %)

Abstract : The purpose of this paper is to find the general class of graph games with last player losing
which may be solved by an analogue of BouTon’s [1901] solution. Moreover, it can be shown that
this class contains all subtraction games, as well as LASKER’s [1931] nim and several other games.
Games such as KayLes and DAwsON’s [1935] game with last player losing are not treated by the
method of this paper and are still unsolved.

1. Introduction

A general theory of sums of graph games with last player winning was developed
by SPRAGUE [1936] and GrRUNDY [1939] through the use of what is now known
as the SPRAGUE-GRUNDY function. An investigation and classification of many
such games was undertaken by Guy and SMiTH [1956]. Related work appears in
HorLrLADAY [1957], BERGE [1958], and SmiTH [1966].

A corresponding general theory of sums of graph games with last player losing
seems more difficult to develop. GRUNDY and SMITH [1956] have investigated
the general problem and indicate that the function corresponding to that of
SPRAGUE-GRUNDY is much more difficult to evaluate and use. This is surprising,
as they point out, in view of the ease with which nim with last player losing was
solved by BouTon [1901].

It is the purpose of this paper to find the general class of graph games with last
player losing which may be solved by an analogue of BouToN’s solution. This
is done in Theorem 2. In the last section, it is seen that this class contains all
subtraction games, as well as LASKER’S nim and several other games. Games
such as KayLes and DAWSON’s game with last player losing are not treated by
the method of this paper and are still unsolved.

2. Graph Games

By a (directed) graph G(X,F) we mean a set X of vertices and a function F
mapping X into 2%, the set of all subsets of X. For x € X, F(x) is called the set of
followers of x. A path is a sequence Xg,Xy,...,X, of elements of X such that
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x;€ F(x;_4) for i = 1,...,n. We restrict attention to graphs that are progressively
bounded, which means that for every xe X there is a number C(x) such that if
X = Xg, X1,...,X, 1S @ path, then n < C(x). For graphs with finite X, this means
merely that there are no circuits, i.e. no paths x, x,..., X, with x, = x,. A vertex
x for which F(x) is empty is called terminal.

Given a progressively bounded graph and an initial vertex x, € X, a two-person
zero-sum game of perfect information may be played as follows. The players move
alternately. The first move consists in choosing an element x, € F(x,). After x,
has been chosen, the player whose turn it is to move chooses x,.; € F(x,). Play
continues until a terminal vertex is reached. The rules then determine whether
the last player to move wins or loses. If the rules state that moving into any terminal
vertex wins (loses), we say the game is last player winning (losing).

Such games are called graph games, and in what follows we refer to G as a game
as well as a graph, and to an element of X as a position as well as a vertex.

For a progressively bounded graph G(X,F), there is a function g, called the
SPRAGUE-GRUNDY function, defined on X, such that g(x) is the smallest non-
negative integer not equal to g(y) for any follower y of x,

g(x) =min{n > 0:n+ g(y) forany yeF(x)}. 1)

If x is terminal, this implies that g(x) = 0. If the SPRAGUE-GRUNDY function
of a graph is known, it is easy to describe an optimal strategy for the graph game
with last player winning. Simply move, if possible, to a vertex (position) with
SPRAGUE-GRUNDY function (SG-value) zero. At positions with positive SG-value,
this is always possible; it is never possible at positions with SG-value zero;
and all terminal positions have SG-value zero. Therefore, such a strategy is
optimal.

The main value of the SPRAGUE-GRUNDY function is its use in solving sums of
graph games. The sum (disjunctive compound) of graphs G,(X,F,),..., G,(X,,F.)
isagraph G(X,F)where X = X; x X, x --- x X,,andfor x = (x1,xs,...,%,) € X,
F(x) is defined as

F(x) = {y = (y1,....yn): for some i, y;e Fi(x;) and for j=+ i, yi=x3 @

and we write G = G, + -+ + G,. When playing the graph game whose graph
is the sum of graphs G,,...,G,, a move consists in moving in exactly one of
the graph games G,,...,G, The reason the SPRAGUE-GRUNDY function is
useful in solving sums of graph games is that there is a very simple operation
for obtaining the SPRAGUE-GRUNDY function for a sum of graphs from the
SPRAGUE-GRUNDY functions of the component graphs. This operation is
binary addition without carry, known as nim-sum. If x and y are nonnegative

integers with binary expansions x = ) x;2' and y = Y y,2' for some m, where
0 0

each x; is zero or one, then the nim-sum of x and y is z, written x + y = z, where
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z=Y2z;2 and z; = x; + y; mod 2 and z; = 0 or 1. Nim sum is associative and

oM =

commutative since addition mod 2 is.
The following basic theorem is due to SPRAGUE [1936] and GRUNDY [1939].

Theorem 1:

If g; is the SPRAGUE-GRUNDY function of G;i = 1,...,n,then G = G, + --- + G,
has SPRAGUE-GRUNDY function g(X1,....%,) = g1(x1) + - F gu(Xn).

3. Bouton’s Solutions for Nim

The game of nim, originally solved by BouTton [1901], is played as follows.
There are n piles of counters with x; counters in the i pile, i = 1,2,...,n. Two
players alternate moving, a move consisting of removing as many counters as
desired, but at least one, from any one pile. When all the counters have been
removed, the game ends and the last player to move wins.

BouToN calls a position (x,...,X,) safe if it is such that the player whose turn
it is to move will lose if his opponent plays optimally. Otherwise, a position is
called unsafe. From an unsafe position, the player to move can force a win by
moving to a safe position, and from thence to the end of the game always moving
to a safe position. BouToN showed that the safe positions at nim are those for
which the nim-sum of the number of counters in the various piles is zero. This
result can easily be seen from Theorem 1. For one-pile nim (a trivial game), the
SPRAGUE-GRUNDY function of equation (1) i8 g(x) = x, where x denotes not
only the number x but also the position with x counters in the pile. Hence, the
SPRAGUE-GRUNDY function for n pile nim is g(xy,...,X,) = X; Fresid 5

BouToN also finds the safe positions for nim with last player losing. Let

By = {(X15-045Xn): Xy ¥--¥x,=0 and for some i, x;>2}
and let
By = {(x1,-+0,%): %1 + -+ F.%, =1 and for all i,x; < 1},

Then the set B = B, U B is the set of safe position for nim with the last player
losing. BouToN’s method of proof is to check the three conditions: i° every follower
of a position in B is not in B, ii° every position not in B has a follower in B and iii°
no terminal position is in B.

In the next section, conditions on the component graphs are presented which
allow one to show by the same method that the safe positions consist of the
analogue of BOUTON’s positions. The structure of the graph is first generalized
to allow one to treat games in which splitting of one pile of counters into two
or more piles is allowed. These considerations, which are more or less trivial
for games with the last player winning, complexify the analysis but enlarge the
scope of the applicability of the theory.
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4. The Main Theorem

We say a graph G(X,F) may be represented as a sum at a vertex xq € X, if the
graph Go(X,,Fo) with X, = {x € X: thereis a path from x, to x} and F(x) = F(x)
for xe X, is representable as a sum G{(X(,F,) + --- + G,(X,, F,). In such a case,
we will write xo = (x4, ...,X,) with x; € X; and speak of the x; as components of the
position x,.It may happen in one of the component games, say G,, that we arrive
at a vertex x,€ X, at which G,/ itself may be represented as a sum
G, = G,; + -+ + G,,. Then it turns out advantageous to represent the game G at
such a vertex as the sum G; + - + G, + G,; + - + G

Therefore, we speak of the vertices of a graph as having components, each
component being the vertex of one of the component graphs. The component
itself may have followers, some of which may consist of more than one component.
We assume that the structure of the graph is given; that is, we assume it is decided
which of various component graphs shall be represented as a sum at which
vertices. Theorem 1 holds at all vertices. The SG-value of a position is the nim-sum
of the SG-values of the components.

We list the assumptions on the structure of the graph to be used in the following
theorem.

Al. Every non-terminal component with SG-value zero has a follower with
SG-value one.

A2.If x is a component with SG-value zero and if y is a follower of x with
SG-value one, then every component of y has SG-value zero or one.

A3.If x is a component with SG-value one and if y is a follower of x with
SG-value zero, then every component of y has SG-value zero or one.

A4.If x is a component with SG-value at least two, then either there exists
a follower of x with SG-value one all of whose components have SG-values zero
or one, or there exists a follower of x with SG-value zero having at least one
component of SG-value at least two.

AS5.If x is a component with SG-value at least two, then either there exists
a follower of x with SG-value zero all of whose components have SG-values zero
or one, or there exists a follower of x with SG-value one having at least one
component of SG-value at least two.

The analogue of BoUTON’s positions for graphs of the above structure may
be described as follows.

Let By, be the set of positions of SG-value zero at least one of whose components
has SG-value two or greater.

Let B, be the set of positions of SG-value one all of whose components have
SG-value zero or one.

Finally, let B = B, U Bj.
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Theorem 2:

If conditions A, through As are satisfied, then the set B is the set of safe positions
for the game with last player losing.

Proof:

Clearly, no terminal position is in B. The theorem will be proved by verifying i°
every follower of a position in B is not in B, and ii® every nonterminal position
not in B has a follower in B. :

i°. Suppose x € By; then every follower of x has SG-value different from zero
and at least one component with SG-value two or greater, and hence is not in B.

Suppose x € B;. If every component of a follower of x has SG-value zero or
one, then the SG-value of the follower is zero and hence is not in B. If a follower
of x has a component of SG-value two or greater, then the SG-value of the follower
cannot be zero from conditions A2 and A3. Hence no follower of x is in B.

ii°. Suppose x ¢ B and has some component with SG-value at least two. Then
there is a follower of x with SG-value zero. If some component of the follower
has SG-value at least two, the follower is in B. If all components of the follower
have SG-values zero or one, then the follower has been obtained by changing
the only component ¢ of x that has SG-value at least two. If there are an even
number of components of x with SG-value one, then by A4 there is a follower
of x that is in B and obtained by changing c. If there are an odd number of com-
ponents of x with SG-value one, then by A5 there is a follower of x that is in B and
obtained by changing c.

If x is a nonterminal position not in B such that all components of x have
SG-values zero or one, then the SG-value of x is zero, and from conditions A1, A2,
and A3 there is a follower of x that isin By C B. W

Conditions A1 through A5 are very nearly necessary as well as sufficient for
B to be the set of safe positions. If condition A1 is not satisfied, there is a non-
terminal component with SG-value zero all of whose followers have SG-value at
least two. The position all of whose components are terminal except this one is
a position not in B all of whose followers are not in B. Therefore A1 is a necessary
condition. A similar analysis shows that conditions A3 and A4 are necessary too.

Condition A5 is not quite necessary as the following example shows. The first
move consists of choosing between playing nim with two piles of two matches
each, and playing nim with one pile of one match. Here, condition A5 is not
satisfied at the initial position, and yet B is indeed the set of safe positions. However,
if such a game is a component of a position with at least one other nonterminal
component, then B is not the set of safe positions. For example, the initial position
of the sum of the above game and a game of one pile, one match nim is safe though
not in B. A similar example shows that A2 is not quite necessary.
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If every follower of each component consists of only one component, as is
the case when G is a simple sum G, + --- + G,, then conditions 42, A3, A4 and
A5 are trivially satisfied. This observation leads to the following corollary. In this
case, condition AI can be imposed on the component games, G; for i = 1,...,n.
If g; represents the SPRAGUE-GRUNDY function for G;, condition A1 means that
if x is nonterminal and g;(x) = 0, then there is a follower y of x in G; such that

g:() = 1.
Corollary:

B is the set of safe positions for the game G, + --- + G, with last player losing,
if and only if, for i = 1,...,n G; satisfies condition Al.

5. Applications

1. Sums of subtraction games. Let S be a nonempty subset of the positive integers.
A subtraction game with subtraction set S, denoted by Gy, is the game played
with a single pile of counters in which at each turn a player is allowed to remove
s counters from the pile provided se€ S and there are at least s counters in the pile.
One pile nim is Gg when S is the set of all positive integers.

Let Gg be a subtraction game with subtraction set S and let gg be the SPRAGUE-
GRUNDY function. Then condition A1 becomes the following: If x is not terminal
and gs(x) = 0, then there is a y > 0 such that x — ye S and gs(y) = 1.

Theorem 3:

Subtraction games satisfy condition Al. The proof of this theorem is based on
the following lemma that is of separate interest.

Lemma 1.

Let k be the smallest element of S. Then gs(x) = 0 implies gs(x + k) = 1. Con-
versely, gs(x) = 1 implies gg(x — k) = 0.

Proof:

Since ke S, gs(x) = 0 implies gg(x + k) 0. Assume the conclusion is false
and find the smallest x such that gg(x) = 0 and gs(x + k) > 2.Since gs(x + k) > 1,
there is an s € S such that gs(x + k — s) = 1. Then x — s > 0 since k is the smallest
element of S. Furthermore, gg(x) = 0 implies gg(x — s) > 0. Thus, there exists
an s'eS such that gg(x — s — s') = 0. This, together with gg(x — s + k) = 1
entails gs(x — s — s’ + k) > 2. Thus, y = x — s — §' < x also satisfies gs(y) = 0
and gs(y + k) = 2 contradicting the choice of x as the smallest such integer.

Conversely, if gs(x) = 1 and gg(x — k) & 0, then there is an se S such that
gs(x — k — s) = 0. From the first part of the theorem, this implies gs(x — s) = 1.
This contradicts gs(x) = 1. W
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Proof of Theorem 3:

Given any nonterminal x such that gs(x) = 0, one has gs(x — k) # 0, where k
is the smallest element of S. This implies that there is an se S such that
gs(x — k — s) = 0. From the lemma, gs(x — s )=1.1

We see that one-pile subtraction games with last player losing are easy to play.
Always move, if possible, to a position with SG-value one. Sums of such games
are correspondingly simple. Always move to a position in B.

2. LASKER’s nim. A modification of the rules of nim suggested by E. LASKER
[1931] allows a player at his turn the options of removing any positive number of
counters from a pile, and of splitting a pile into two nonempty piles without
removing any counters. The SPRAGUE-GRUNDY function of LASKER’s nim, denoted
by g, has been evaluated by SPRAGUE [1936] and found to be

g91(0) =0
and for x > 0

ol i e= 3 mod 4

% if x=1 or 2mod4
gL(x) =
x =1 =0 mod 4

The only component of SG-value zero is the empty pile which is terminal.
Therfore, Al and A2 are automatically satisfied. The only component of SG-value
one is the pile with one counter, and its only follower is terminal. Therefore A3
is satisfied. All other components have the empty pile and the pile of one counter
as followers. Therefore, A4 and A5 are satisfied. Hence for LASKER’s nim with
last player losing, B is the set of safe positions.

In fact, the above analysis holds for any game such that i° every nonterminal
component has a terminal follower, and ii® every nonterminal component not all
of whose followers are terminal has as a follower a position all of whose followers
are terminal. In bafticular, B is the set of safe positions for SPRAGUE’s variants
of LASKER’S nim given in SPRAGUE [1936]. One variant allows splitting into any
even number of nonempty piles. This variant has the same SPRAGUE-GRUNDY
function as LASKER’s nim. Another variant allows splitting into any number of
nonempty piles. This variant has SPRAGUE-GRUNDY function.
g0) =0, g) =1, g2 =2, gB) =4 g4 =3, g(5 =5, g(6) =6, and for
nZ1,g(5n+2)=8n,g(5n+3)=8n+2,g(5n+4)=8n+1,g(5n + 5 =
8n+5,9g(5n+6)=8n+17.

3. Split or take one to k. Consider the game in which a player may, at his turn,
split any one pile of counters into two nonempty piles, or remove from any one
pile any positive number of counters not exceeding k. For k even, the SPRAGUE-
GRUNDY function is eventually periodic of period k + 2. In terms of g, for LASKER’s
nim it may be written

g(x) = gr(x) for x<kgk+1)=0gk+2)=k+1
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and
gx) =gx = (k+2) for n>k+2.
For k odd, it is eventually periodic of period k + 1. For k = 1 mod 4,

gr(x) for x<k+1
gx) =1 -
gu(x —1) modk+1 for x>k+1

with 0 < g(x) < k. For k = 3 mod 4,

( gr(x) for x<k+1
el
. gux+1)—2 mod k+1 for x>k+1

with 0 < g(x) < k. For example, the SG-series for k =4 is 01243 05 (the
sequence between the dots is to be repreated indefinitely), for k =5 it is
012435602134, for k=6 it is 012435607 and for k =7, it
0124356870213465.

For k even, it is not difficult to check that conditions A1 through A5 are satisfied,
so that from Theorem 2 the set B is the set of safe positions in the game with last
player losing.

For k odd, the game does not satisfy condition A1 at x = k + 2. Hence, B is not
the set of safe positions.

4. The game -770. An interesting game solved by Guy and SmitH [1956] and
denoted by -770 in their notation is played with the following rules. At each
turn, a player may remove from any one pile any number of counters not divisible
by three; he may also, if he likes, split that pile into two non-empty piles. The
SPRAGUE-GRUNDY function for this game is eventually periodic of period three.
The SG-series starts out 012314364367... and does not settle down to
periodicity until the 160™ term, there being 126 exceptional values.

Yet one can show fairly easily that conditions A1 through A5 are satisfied.
From an examination of the SG-series given in GUy and SmiTH [1956], one sees
that there are no nonterminal zero SG-values; hence A1 and A2 are satisfied.
There are only two components with SG-value one; namely 1 and 4. The followers
of SG-value zero are 0 and (1,1); hence A3 is satisfied. For x not divisible by 3,
the component x has 0 as a follower, while an x divisible by 3 has (1,1) as a follower;
hence A5 is satisfied. If x is not equal to one mod 3, x has 1 as a follower. If x is
equal to one mod 3 and x > 7, x has (3,3) as a follower. Thus 44 is satisfied as
well and the BOUTON positions are the safe positions.

5. Other games. Conditions A1, A2 and A3 are relatively strong and conditions
A4 and A5 relatively weak. Therefore, if an SG-series has few zeros and ones we
suspect it is more likely to satisfy the conditions of Theorem 2. This is borne out
statistically if we look at tables 2 and 3 of Guy and SmiTH [1956]. Of the games
listed in table 2 in which the SG-series have many zeros and ones, only about
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607, satisfy conditions A1 through A5. On the other hand, the games listed in
table 3 have only a few zeros and ones that appear only at the very beginning of
the SG-series. Of these 77 games, only one does not satisfy conditions 41 through
AS, that one being -770, which does not satisfy A5.

It should be noted that the SG-series alone does not determine whether a
game satisfies A1 through A5. For example, the game 333 (the subtraction game
with S = {1,2,3}) and the game -73 (take 1, or take 2, or take 1 and split) have
the same SG-series 01230123... and so are equivalent as games with the
last player winning. Yet the former satisfies the conditions from Theorem 3,
and so has a simple solution for the last player losing. The latter does not satisfy
conditions A1 and A3, and its solution is not so simple.

In spite of the apparent success of Theorem 2, it should be pointed out that
most of the more interesting games do not satisfy the conditions of Theorem 2.
The well-studied game of KAYLEs in which a player at his turn may take 1, or
take 2, or take 1 and split, or take 2 and split, has SG-series eventually periodic
of period 12 that commences 0123 14.... This does not satisfy condition A5
for a component with 5 counters. DAWSON’s game, originally suggested and
partially analysed as a game with last player losing by DawsoN [1935], in which
a player at his turn may take 2, or take 3, or take 3 and split, or take 1 provided
itis a whole pile, has an SG-series eventually periodic of period 34 that commences
0112031103.... This does not satisfy condition 45 for a component with
9 counters. These two games and the others mentioned in Guy and SmiTH that
do not satisfy the conditions 41 through A5, and the game, split or take one
to k, for k odd, seem very difficult to treat as last player losing games and are
still unsolved.
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