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1. Introduction. Certain distributions may be characterized by conditions
asserting the independence of suitable statistics. The most renowned of these char-
acterization theorems is that first proved by Kac [5] which states: if random
variables X and Y are independent, then X+Y and X — Y are independent if
and only if, both X and Y have normal distributions with a common variance.

A similar characterization of the gamma distribution has been proved by
Hogg [4] and Lukacs [6]. It is the purpose of this paper to investigate the ex-
tent to which the geometric distribution may be characterized by analogous
assumptions of independence.

The starting point for this investigation was the observation in [1] that if
X and Y are independent random variables each following the same geometric
law with probability mass function

(1) f(k)=(1_l>)?k k=0,1,2"")

where 0 <p <1, then the random variables min(X, ¥) and X — ¥ are stochasti-
cally independent. It was also observed, however, that if X and ¥ are inde-
pendent random variables having the same exponential distribution with den-
sity

f(z) = Ae P60 if >0

2
@ =0 if z<6,

where A>0, then again the random variables min(X, ¥) and X— ¥ are sto-
chastically independent. Thus, the independence of min(X, ¥) and X — ¥ for
independent X and ¥ will not by itself characterize either the geometric or ex-
ponential distributions, so that a complete analogue of the result of Kac cannot
be valid. Therefore, in order to obtain a characterization of either the geometric
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or the exponential distribution, it is necessary to restrict the distributions in
some way. In [2], the following result was obtained: if X and Y are independent
random variables with absolutely continuous distributions, then min(X, V) and
X — Y are independent if, and only if, both X and Y have exponential distributions
of the form (2) with a common value of @ (but possibly different values of ).

For a formulation of the problem which contains the normal, the gamma, the
exponential, the geometric, and other distributions in a single statement, see
[1] or [2]. In this paper the distributions of X and Y are restricted to be dis-
crete.

The term geometric distribution signifies in this paper the distribution of any
random variable X for which there is a real number 6 and a positive real number
¢ such that the random variable (X —60)/c has the distribution of formula (1).
The parameters 6 and ¢ are respectively location and scale parameters of the
distribution of X. The parameter p will be referred to as the geometric param-
eter. A random variable X is said to be degenerate at x, if P(X =x,) =1. In the
next section, it is shown that if X and ¥ are independent, nondegenerate, dis-
crete random variables, then min(X, ¥) and X — Y are independent if, and only
if, X and Y both have geometric distributions with common location and scale
parameters, but with possibly different geometric parameters.

With such a theorem, the study of the independence of min(X, ¥)and X~ ¥
for independent, discrete X and Y is easily completed with the aid of the follow-
ing simple theorem which takes care of the degenerate cases.

TrEOREM 1. If X is degeneraie at xo, then min(X, Y) and X — Y are inde-
pendent if, and only if, either (i) Y is degenerate or (ii) P(Y = x,) =1.

Proof. The “if” part of the theorem is immediate, since degenerate random
variables are independent of any random variables, and since both (i) and (ii)
imply that min(X, Y) is degenerate. To prove the “only if” part, suppose that
Y is nondegenerate and that P(Y =x,) <1. Then, there exists a number m <x,
such that 0 <P(Y <m) <1. Using the independence of min(xy, ¥) and x,— Y,
we have

P(Y <m) = P(min (x, ¥) < m) = P(min (zo, ¥) < m] %o— ¥V > x9—m)
=PY<m|¥V <m)=1.
This contradiction completes the proof.

The analogous theorem where Y is degenerate is also valid, since if min(X, ¥)
is independent of X — Y, it is automatically independent of ¥ —X.

2. The characterization theorem. We first present two lemmas. The first
lemma may be found as a special case of a lemma of Ghurye [3, Lemma 1]
proved by means of Fourier transforms. For the sake of completeness and sim-
plicity we give a proof of Lemma 1 involving only elementary notions.

LemMA 1. If X and Y are independent, and if X and X — Y are independent,
then X is degenerale.
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Proof. Suppose that X is not degenerate. Then, there exist four points
%1 <xp<x3<xs such that P{m <X <%} >0 and P{xs<X =<w}>0. For any
other variable ¥ and all numbers y

) PlY — X2y, 51 SXSu} SP{YSy+a,msS XS )
and
4) PlY — X<y, m<X<w}ZP{V Sy+ a5 X =S ).

Inequality (3) and the independence assumptions imply

) PlY — X2y} s P{Y =9+ m}
for all y. Similarly, from inequality (4),
(6) P{Y Sy+ s} < P{¥Y — X <y}

for all y, which in conjunction with (5) implies that ¥ has no mass anywhere.
This contradiction completes the proof.

LEMMA 2. Let X and Y be independent nondegenerate random variables and
suppose that U=min(X, V) and V=X —Y are independent. If P(X =x) >0 and
P(Y>x)>0, then P(Y =x)>0. Similarly, if P(Y=y)>0 and P(X>y)>0, then
P(X=9v)>0.

Proof. Suppose P(Y =x)=0. Then if P(X =x)>0 and P(Y>x)>0,
) PV=0)=PW20|U=0)=PXSY|X=0Yz2)=1

Thus, P(X £ Y)=1, so that U is equal to X with probability 1. Since now X is
independent of X—Y, Lemma 1 will provide a contradiction, proving that
P(Y =x)>0. The last statement follows by symmetry since if U is independent
of V it is also independent of — V.

A number x is said to be a possible value of a discrete random variable X,
if P(X =x)>0. Using this terminology, the conclusions of Lemma 2 may be
stated for discrete variables as: Every possible value of X less than some possible
value of YV is a possible value of Y, and every possible value of Y less than some
possible value of X is a possible value of X.

THEOREM 2. Let X and Y be independent, nondegenerate, discrete random vari-
ables. Then, U=min(X, Y) and V=X —Y are independent if, and only if, both
X and Y have geometric distributions with the same location and scale parameters.

Proof. First, suppose that U and V are independent; then for all # and all
=0,
® P(U=u)P(V=19)=Pmin(X,Y)=u,X— Y =)
=P(X =u+ 2)P(Y = u).

Lemma 2 implies that P(V =0)0, so that by putting ¥=0 in equation (8) we
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may solve for P(U=u). Substituting this value into equation (8) gives for all
#and all 920

(9 P(X=wP(¥ =w)P¥V =1v) = P(X = u+0)P(Y = )PV = 0).

Lemma 2 and nondegeneracy imply that there are at least two distinct num-
bers, %o <x1, which are possible values simultaneously for X and Y. Two equa-
tions may be obtained by letting » assume the values %, and x; in (9), from
which P(V =9) may be eliminated, yielding for all #>0,

5 D P(X = xl) i ¥
(10) P(X-—x;-i—v) = [m]P(X—QGo'}"D).
This implies, by induction, that
X =% S
(11) P(X = n(x1 — xo) + x0) = [—Ilj‘ET:—i—;—] P(X = xp).

Since the total mass of the distribution of X must be finite, P(X =x,) > P(X =x).
But since %y and x; were arbitrary numbers which were possible values of both
X and Y, we see that there can be at most a finite number of possible values of
X which are less than x;. We now suppose that x, is the smallest of the possible
values of X and that x; is the next smallest. Then equation (10) inductively
implies that the only possible values of X are #n(x;—x,) +x,, #=0, 1, 2, - - -
and equation (11) implies that X has a geometric distribution on these values.
By symmetry, Y also has a geometric distribution, and Lemma 2 implies that
Y must have the same set of possible values, and hence the same location and
scale parameters.

Now, suppose that X and ¥ have geometric distributions with the same
location and scale parameters, and geometric parameters p; and p; respectively.
A change of location and scale will not affect the independence or noninde-
pendence of U and V, so we may choose the variables to be defined on the non-
negative integers as in equation (1). Then, for all % and all =0,

PlU=uV=10} =P{X=ut+o}P{V =4} =1 —p)(1 — po)pr" pu,
while for all # and v <0,

Pl =uV=0=P{X=u}lP{V =u—9} =1 —p)(l — p)p1ps -
Thus P{ U=u, V=v} obviously factors into a product of a function of #, say
P{ U= u} = (1 — p1ps)(p1p2)*, and a function of v, say P{V = v}
=(1—p1) (1 —p2) (1 — p1ps) 4] for =0, and

PV =0} = (1 — p)(1 — p)(1 — pups) p2” for <0,
proving the independence of U and V.
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