
Solution to Exercises 7.7.12 through 7.7.15.

7.7.12. (a) Let Z1, Z2, . . . be i.i.d. with M(t) = EetZ , and suppose for some 0 < ρ < 1 that M(t1) =
M(t2) = 1 for some t1 �= t2 . Since M is convex and M(0) = 1, t1 and t2 are of opposite signs, so we take
t1 < 0 < t2 without loss of generality. The Fundamental Identity gives

E(et2SN ρN ) = E(et1SN ρN ) = 1

For N = min{n > 0 : a < Sn < b} , the Wald approximations are obtained by replacing SN by a when
SN ≤ a , and SN by b when SN ≥ b .

et2aEρN I(SN ≤ a) + et2bEρN I(SN ≥ b) = 1

et1aEρN I(SN ≤ a) + et1bEρN I(SN ≥ b) = 1

Solving for EρN I(SN ≤ a) and EρN I(SN ≥ b) and summing gives

EρN = EρN I(SN ≤ a) + EρN I(SN ≥ b) =
et1a − et2a + et2b − et1b

et2b+t1a − et2a+t1b
.

The denominator is never zero since t2b + t1a > 0 and t2a + t1b < 0.
(b) For Example 1, where Z1 = z with probability p and Z1 = −z with probability 1− p and we take

a = −jz and b = kz for some j and k , there is no excess over the boundary, so the Wald approximation is
exact. The equation for t1 and t2 is M(t) = petz + (1− p)e−tz = 1/ρ . This is quadratic in x = etz , with
solutions

x1(ρ) = et1z =
1−

√
1− 4ρ2p(1− p)

2ρp

x2(ρ) = et2z =
1 +

√
1− 4ρ2p(1− p)

2ρp
.

Substituting this into the formula for EρN of part (a), we find

EρN =
x−j

1 − x−j
2 + xk

2 − xk
1

xk
2x

−j
1 − x−j

2 xk
1

.

7.7.13. Using the fact that
∑∞

1 Bn(θ)Mn(θ)−n = EθMθ(t)−N I(SN ≥ b) and
∑∞

1 An(θ)Mn(θ)−n =
EθMθ(t)−N I(SN ≤ a), we may write equation (7.89) as

1 ≡ (1− θ)etb

(1− θ − t)
EθMθ(t)−N I(SN ≥ b) +

(1 + θ)eta

(1 + θ + t)
EθMθ(t)−N I(SN ≤ a)

We solve the equation Mθ(t) = 1/ρ for t , namely, ρ(1−θ2) = 1− (θ+ t)2 , and find that there are two roots,
t1 = −θ −

√
1− ρ(1− θ2) and t2 = −θ +

√
1− ρ(1− θ2) with t1 < 0 < t2 . We have the two equations,

(1− θ)etib

(1− θ − ti)
Eθρ

N I(SN ≥ b) +
(1 + θ)etia

(1 + θ + ti)
Eθρ

N I(SN ≤ a) = 1

for i = 1, 2. Solving for Eθρ
N I(SN ≥ b) and Eθρ

N I(SN ≤ a) and summing gives

Eθρ
N =

(1+θ)
(1+θ+t1)

et1a − (1+θ)
(1+θ+t2)

et2a + (1−θ)
(1−θ−t2)

et2b − (1−θ)
(1−θ−t1)

et1b

(1−θ)
(1−θ−t2)

· (1+θ)
(1+θ+t1)

et2b+t1a − (1−θ)
(1−θ−t1)

· (1+θ)
(1+θ+t2)

et1b+t2a
.



7.7.14. (a) For all n ≥ 1, we have P(N ≥ n) = P(ε1 = 0, . . . , εn−1 = 0, N̂ ≥ n) = pn−1
0 P(N̂ ≥ n). Then

assuming p0 < 1,

EN =
∞∑
1

nP(N = 1) =
∞∑
1

P(N ≥ n) =
∞∑
1

pn−1
0 P(N̂ ≥ n)

=
∞∑
1

pn−1
0 P(N̂ = n) +

∞∑
1

pn−1
0 P(N̂ ≥ n + 1) = EpN̂−1

0 +
∞∑
2

pn−2
0 P(N̂ ≥ n)

= EpN̂−1
0 + p−1

0 [EN − 1].

Solving for EN , we find EN = (1− EpN̂
0 )/(1− p0).

(b) The result follows immediately from the computations

P(SN = +∞) =
∞∑
1

P(N = n, Sn = +∞) =
∞∑
1

P(ε1 = 0, . . . , εn−1 = 0, εn = ∞, N̂ ≥ n)

=
∞∑
1

pn−1
0 p+P(N̂ ≥ n) = p+EN = p+(1− EpN̂

0 )/(1− p0)

using (a). (Note the misprint in the text.)
(c) Similarly,

P(b ≤ SN < ∞) =
∞∑
1

P(N = n, b ≤ Sn < ∞) =
∞∑
1

P(ε1 = 0, . . . , εn−1 = 0, εn = 0, N̂ = n, Ŝn ≥ b)

=
∞∑
1

pn
0P(N̂ = n, Ŝn ≥ b) =

∞∑
1

P(N̂ = n)pn
0P(Ŝn ≥ b|N̂ = n) = EpN̂

0 I(ŜN̂ ≥ b).

7.7.15. We have

Zi = log
f1(Xi)
f0(Xi)

=

{− log 2 if Xi = 0
+ log 2 if Xi = 1
+∞ if Xi = 2.

Under H0 , P(Zi = − log 2) = 4/5 and P(Zi = log2) = 1/5, so we may use the formulas of Example 1, pp.
377-378, with p = 1/5 to find

α0 =
1− 4−j

4k − 4−j
and E(N |H0) =

5
3

[
j(4k − 1)− k(1− 4−j)

4k − 4−j

]

Under H1 , we may use Exercise 7.7.14 with Zi = Ẑi + εi , where

Ẑi =
{
− log 2 with prob. 1/2
+ log 2 with prob. 1/2 and εi =

{
0 with prob. p0 = 4/5
+∞ with prob. p+ = 1/5

and p− = 0. To compute E{N |H1} from Exercise 14(a), we need EpN̂
0 which may be found from Exercise

12(b). Putting ρ = p0 = 4/5 and p = 1/2 in the formulas for Exercise 12(b), we find x1(p0) = 1/2 and
x2(p0) = 2 so that

EpN̂
0 =

2j − 2−j + 2k − 2−k

2j+k − 2−(j+k)
=

(2j + 2k) − 2−(j+k)(2k + 2j)
(2j+k + 1)(1− 2−(j+k))

=
2j + 2k

2j+k + 1

Then from Exercise 14(a),

E{N |H1} =
1

1− p0
(1− EpN̂

0 ) = 5
(2k − 1)(2j − 1)

2j+k + 1
.
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(Note the misprint in the text.) To compute α1 = 1− P(SN = +∞)− P(b ≤ SN < ∞), first use 14(b) and
the above to find

P(SN = +∞) = p+E(N |H1) =
1
5
5(1− EpN̂

0 ) = 1− EpN̂
0 .

From 14(c), we must resolve the equations of 12(a) for EρN I(SN ≥ b) alone and solve the analog of 12(b).
We find

P(b ≤ SN < ∞) = EpN̂
0 I(ŜN̂ ≥ b) =

et1a − et2a

et1a+t2b − et2a+t1b

=
x−j

1 − x−j
2

xk
2x−j

1 − x−j
2 xk

1

=
2j − 2−j

2j+k − 2−(j+k)

since we have already found x1 = 1/2 and x2 = 2. Combining all this, we have

α1 = EpN̂
0 − P(b ≤ SN < ∞) =

2j − 2−j + 2k − 2−k

2j+k − 2−(j+k)
− 2j − 2−j

2j+k − 2−(j+k)
=

2k − 2−k

2j+k − 2−(j+k)
.
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