Solution to Exercises 7.4.6 and 7.4.7.

7.4.6.(a) The problem is invariant under scale changes, $g_b(x_1, \ldots, x_j) = (bx_1, \ldots, bx_j)$ for b > 0, with $\bar{g}_b(\theta) = b\theta$ and $\tilde{g}_b(a) = ba$. Since $\bar{\mathcal{G}}$ is transitive, all invariant rules will have constant risk. Since $\tilde{\mathcal{G}}$ is transitive too, every invariant rule must take at least one observation. We see from the density, $f(x|\theta) = (\theta^{-\alpha}/\Gamma(\alpha))e^{-x/\theta}x^{\alpha-1}$ with α known, that $T_j = \sum_{1}^{j} X_i$ is a sufficient statistic for θ for a sample of size j. The terminal decision rule can be restricted to functions of the sufficient statistic.

(b) To show that the maximal invariant, $\mathbf{Y}_j = (Y_2, \ldots, Y_j) = (X_2/X_1, \ldots, X_j/X_1)$, and T_j are independent, it is easier to use Basu's Theorem (the next exercise) but here is a direct demonstration. The change of variable from X_1, \ldots, X_j to X_1, Y_2, \ldots, Y_j has Jacobean x_1^{j-1} , so the joint density of X_1, Y_2, \ldots, Y_j is

$$f(x_1, y_2, \dots, y_j) = \frac{1}{\Gamma(\alpha)^{j \theta^{j \alpha}}} \exp\{-\frac{1}{\theta} x_1(1 + t_2 \dots + t_j)\} x_1^{j(\alpha-1)+(j-1)} \prod_{j=2}^{j} y_i^{\alpha-1}.$$

Now make the change of variable $T_j = X_1(1 + Y_2 + \cdots + Y_j)$ for X_1 (Jacobean $1/(1 + y_2 + \cdots + y_j)$) and find the joint density of T_j, Y_2, \ldots, Y_j to be

$$f(t, y_2, \dots, y_j) = \frac{1}{\Gamma(\alpha)^j \theta^{j\alpha}} \exp\{-\frac{t}{\theta}\} t^{j\alpha-1} (1+y_2+\dots+y_j)^{-j\alpha} \prod_{j=1}^j y_i^{\alpha-1}.$$

Since this factors into a function of t and (y_2, \ldots, y_j) , it follows that T_j and \mathbf{Y}_j are independent. Hence under the hypotheses of Theorem 4, the best invariant rule is a fixed sample size rule.

(c) The best invariant terminal rules are $d_j(T_j) = T_j/b$ where b is chosen to minimize $E_1(1 - (T_j/b)^2)^2$, where E_1 refers to expectation when $\theta = 1$. This leads to $b^2 = E_1 T_j^4 / E_1 T_j^2$. Since $T_j \in \mathcal{G}(j\alpha, 1)$ when $\theta = 1$, we have $b^2 = (j\alpha)(j\alpha + 1)(j\alpha + 2)(j\alpha + 3)/[j\alpha(j\alpha + 1)] = (j\alpha + 2)(j\alpha + 3)$. The minimum terminal loss is

$$\rho_j = \mathcal{E}_1 (1 - (T_j/b)^2)^2 = 1 - \frac{(j\alpha(j\alpha + 1))}{(j\alpha + 2)(j\alpha + 3)} = \frac{4j\alpha + 6}{(j\alpha + 2)(j\alpha + 3)}$$

In summary, the best invariant rule takes a fixed sample of size J, where J is that j that minimizes $\rho_j + jc$, and then estimates θ to be $T_J/\sqrt{(j\alpha+2)(j\alpha+3)}$. Through some oversight, the value of α was not given so numerical values of the rule cannot be found. If $\alpha = 1$ and c = 1/60, then numerical computation gives J = 12.

7.4.7. Let $g(\mathbf{Y})$ be an arbitrary function of \mathbf{Y} . Since the distribution of \mathbf{Y} does not depend on θ , $E(g(\mathbf{Y}))$ does not depend on θ . By sufficiency $E(g(\mathbf{Y})|T)$ does not depend on θ , so

$$E_{\theta}[E(g(\mathbf{Y}|T)) - E(g(\mathbf{Y}))] = E_{\theta}[E(g(\mathbf{Y}|T)] - E(g(\mathbf{Y}))]$$
$$= E(g(\mathbf{Y})) - E(g(\mathbf{Y})) = 0$$

for all θ . Since the sufficient statistic is complete, we have $E(g(\mathbf{Y})|T) = E(g(\mathbf{Y}))$ with probability one. This shows that T and **Y** are independent.