Solutions to Exercises 7.3.2 through 7.3.5, and 7.3.7 through 7.3.11.

7.3.2. (a)

Eo,4(dn(Tn)) = Eo,¢{Eg(dn (Tn)|N, Tn)}
=P(N =2,Ty =1)dy(1) + P(N = 2, Ty = 2)dz(2) + P(N = 3, T3 = 0)d3(0)
+P(N =3,T5 = 1)ds5(1) + P(N = 3, T3 = 2)d3(2)
=0(1 — 0)da(1) 4+ 6%da(2) + (1 — 0)3d3(0) + 20(1 — 0)d3(1) + 6*(1 — 0)d3(2)
= d3(0) + 0[d2(1) — 3d5(0) + 2d3(1)]
+ 0%[—da(1) + da(2) + 3d3(0) — 4d3(1) + d3(2)] + 6°[—d3(0) + 2d3(1) — d3(2)].

(b) Equating coefficients in Eg ¢(dn(Tn)) = 6, we find

0
1

= da(1) + 4d5(1)
d

If we let 2z = d3(2), the class of unbiased nonrandomized estimates is: do(1) =1 — z, d2(2) =1, d3(0) =0,
ds(1) = 2z/2 and d3(2) =z for 0 < 2 < 1.
(¢) The expected loss as a function of z and 6 is

R(0,2) = Bp (0 — dn (T))? = 0(1 — 0){z2(0 + 3)/2 — 22 + 1}.

(d) If z>2/3, then R(0,z)—R(6,2/3) = 60(1—0){(» —2/3)[(+2/3)(0+3)/2—2]} > 0 for all §. This
shows that the unbiased estimate with d3(2) = z is improved by the estimate with d3(2) = 2/3.

If z<1/2,then R(A,z) — R(0,1/2) =6(1 —0){(1/2 —2)[2—(1/2—2)(0 + 3)/2]} > 0 for all #. This
shows that the unbiased estimate with d3(2) = z is improved by the estimate with d3(2) = 1/2.

7.3.3. X1 is B(1,1/2), and X, given X; =0 is B(1,6) while X5 given X; =1 is B(1,1/2).
R(0,(¢,0)) = Eg,¢(Ep(L(0, dn (X1, ..., XN)) + (0, X1,..., XN)|N))
1
=Py(N =1)[(6 - 5)2 +c +Py(N =2)[0(1 —0)? + (1 — 0)6* + 2]
1

1 1, ¢ 1.3
—2(9—2)+2+29(1—9)+c—8+20
1
R(0,(¢°,6%) =Pyo (X1 =1)(0 — 5)2 + Pyog(X1 =0,Xo =1)(1 = 0)* + Pgo o(X1 = 0, X2 = 0)6% + 2¢
_L L e Lo e Lo g _1
_2(2 9)+29(1 6)+2(1 6)0 +2c_8+2c.

7.3.4. The Bayes risk for a rule that takes no observations is
5L(0,a) 4+ .5L(1,a) = 5(a*+(1—a)?)=a®>—a+.5

with minimum value 1/4, taken on at a = .5. For a rule that observes (X7, X3), the posterior distribution
of § given X7 =1,Xo =1 or X; =1, X, =0 is the same as the prior and so the Bayes rule for these points
is d(1,1) = d(1,0) = .5 also. The posterior of 6 for X; = 0, Xy = 1 is degenerate at 1, so the Bayes rule
is d(0,1) = 1; similarly, the posterior of 8 given X; = 0, X2 = 0 is degenerate at zero giving d(0,0) =0 as
the Bayes rule. Thus the rule (¢Y,6%) is Bayes with respect to this prior if its Bayes risk, 1/8 + 2¢, is not
greater than that of taking no observations, 1/4. This reduces to the condition, ¢ < 1/16.

7.3.5. (a) First we find ©2(T},) = P, (N = n|N > n,T,). Since ¢ always takes at least two observations,
we have ¢} = 0 and ¢§ = 0. For n = 2, ¢9(t) = Py,(N = 2|Tx = t). If T, = 0, then Xy = 0



so that ©3(0) = 0. If T, = 1 then X; = 0,X; = 1 and X; = 1,Xo = 0 are equally likely, so that
W3(1) = Pu,(N =2|Th = 1) = Py,(Xe = 1|T2 = 1) = 1/2. If N > 3, then we know that X5 = 0 so that
©3(t) = Pu(N = 3| X2 = 0,73 = t). We find similarly, 3(0) =0, ¢J(1) =1/2 and ©3(2) =1. (If N > 3,
then T5 cannot be equal to 3.) Finally, p4(t) = 1.

The terminal decision rule is given by 5?(1&) =E,(0;(X1,...,X;)|N = j,T; = t), the mixture of the
distributions ¢; using the mixing distribution of Xj,..., X; given N = j and T; = ¢t. We never stop before
stage 2, so 69 and 87 are undefined. If N =2, then X5 = 1 so that §9(¢) = 1 for all ¢. Similarly if N = 3,
then X3 =1 so that 65(t) =1 for all t. If N =4, then Xo =0 and X3 = 0 so that Ty = X; + X4. We
then compute 63(0) =0 w.p. 1, 69(1) =0 w.p. 1/2, and = 1 w.p. 1/2, and §3(2) =1 w.p. 1.

(b) To find the nonrandomized rule that improves on §°, we replace each 5;-) by its expectation. Thus,
d3(t) =1 for all ¢, d3(t) =1 for all ¢, and dJ(t) =0 for t =0, =1/2 for t =1 and =1 for t = 1.

7.3.7. (a) Since T, is a sufficient statistic, and T,, € P(nf), we have for nonnegative integers x1, ..., x,

such that z1 + -+ x, = t,

le X (331, .. ,xn|9)
P(X, = X, = T, =1t) = L

( 1 T, 5 n xn| n ) fTﬂ(t|6)

exp{—nf}Or T Fon /(4] g, 0)
exp{—nb}(nd)t/t!
t! 1

-G

z!-xn!tn

This is the multinomial distribution with n cells with equal probabilities 1/n, and sample size t.
(b) By Theorem 3, ¢(d°) is as good as (¢, d), where for t,, > 2,

d2(tn) = Bp(dn(X1, ..., Xn)|N =n,T), = t,)

=EXy| X1+ 4+ X1 <2,T =t,)

=PX1=1X1+4 -+ X,,_1 <2,T, =ty)

P =1,X0+ X <2[T, = ty)
B P(Xy+ -+ X, 1 <2|T), =t,)

P(X1=1,X=0,...,X,_1 =0|T}, = t,,)
PXi+ 4+ Xy 1=0T,=t,) +P(X1+ -+ Xpn_1 = 1T, = tn)
(ta!/ (T, = DY (1 /n)" B tn

(1/n)tn + (n — 1)(ta/(t, — DA /n)tn 14 (n— D)t

7.3.8. (a) Since T,, is a sufficient statistic, and T, € NB(n,0), we have for nonnegative integers
T1,...,T, such that =1 + - -+ 2, =,

oox, (T, x|l
PXi=z1,....,Xp=zn|Tn =1) = o 7Xf; (1t|9) .

B (1 _ 9)n9x1+~~~+xn
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(Note the misprint in the text.)
(b) Forn>1and t >n—1,
Eo(Xi|N=n,T,=t)=---=E4(Xp_1|N=n,T,=t) and E4X,|N=n,T,=1t)=0

so that

n
t=Ee(O> XiIN=n,T, =t) = (n—1)Es(X1|N =n,T,, = 1)
1



which gives d%(t) = E4(X1|N =n,T, =t) =t/(n —1). For n = 1, we must have X; = 0, so d)(t) =
Eo(X1|N = 1,71 = 0) = 0.
(c) Automatically, ¢9 = ¢o. For n =1,

() =Py(N =1N>1,T1 = t) = ¢:1(t)
while for n > 1 and t >n — 1,

()= P =nlTu=1) _ P(X1>0,..., X1 >0,Xn =0T = 1
" Pg(N >n|T, =t) P(X1>0,....,X,-1>0[T, =)

To compute the numerator probability, note that the number of points in the set {(z1,...,Zp—1) : x; >
0, Z?_l x; =t} is the same as the number of points in {(x1,...,2p_1) : 2; > 0, Z?_l x,=t—(n—-1)},
which is (("_1)+(t_("_1))_1) =( -1 ). Hence

t—(n—1) t—n—+1
(50
P(X1 >0, Xpo1 > 0,X, = 0|T, = #) = <;;2t1).
t
Similarly,
(t—rtL—i-l)
P(Xl >0,.. -7Xn—1 > O|Tn = f,) = (n+t—1) .
t
Hence,

(—t_ll) n—1
O@t) = =2+ = :

t—n+1

7.3.9. We must show P(X1 = z1,...,2; = x;|T; =t,Tj41 =t + x) does not depend on z for z =0 or

Po(Xi=z1,....X;=2;,T; =t,X;11 =x)

Pg(Tn Zt,Xj_H ZJ?)
Py X=Xy =a,. . Xy =2, Ty = 0)Pe(Xy =21, X =25, T; = 1)
B Py(Xj 1 = z|T; = 1)Po(T; = 1)

P(X; le,...,szxj|Tj=t,Tj+1Zt—l-.l?):

The first terms in numerator and denominator are equal (when z =1 both are equal to (6 —t)/(M — j)).
These cancel, showing T,, is transitive.

7.3.10. For any set A,

P97¢((X1, .. .,Xn) S A, N = n|Tn = f,)
P97¢(N = n|Tn = f,)
E(TA(X1, .., Xo)n (X1, ..., X)) [T = 1)
EWn(X1,.... Xo)|Tp = t)

P97¢((X1, . ..,Xn) (S A|N =n,T,= f,) =

Note that this depends on the distribution of Xj,..., X, only through the conditional distribution of
(X1,...,Xp) given T,, = t. But for n < M, Xy,...,X,, in Exercise 9, and X1, ..., X,, from independent
Bernoulli trials have the same conditional distribution given T,, = ¢, hence they have the same conditional
distribution given N =n and T,, = t.

7.3.11. Let X, Xo,... be independent Bernoulli trials with Pg(X; = 1) = 1/2, and Pp(X; = 1) =6
forall i > 1. Then T =0, Ty = (X1, X2),..., T, = (X1, 5 X;),dots, forms a sufficient sequence for 6.
But E(X1|T1) = 1/2 and E(X1|T1,T> = (z1,22)) = 1. Since these quantities differ, the sequence is not
transitive.



