
Solutions to the Exercises of Section 6.2.

6.2.1. First we show the hint: for z > 0, 1− z + log z ≤ 0 (note the inequality is backward in the text).
Let g(z) = 1 − z + log z . Then g′(z) = −1 + (1/z) and g′′(z) = −1/z2 . Thus, g(z) reaches its maximum
at z = 1, so for all z > 0, g(z) ≤ g(1) = 0.
Now for f(x, y) = xy(log y − log x)/(y − x) for x �= y , (and we may define f(x, x) = x by continuity), we
may compute

∂f

∂y
=

(y − x)[x(log y − logx) + x]− xy(log y − logx)
(y − x)2

=
−x2

(y − x)2
g(y/x) ≥ 0.

Hence, f(x, y) is increasing in y for each x . And since f(y, x) = f(x, y), we also have that f(x, y) is
increasing in x for each y .

6.2.2. (a) An optimal classification rule is φ(i|x) = I[µi,µi+1)(x) for i = 1, . . . , k , where µk+1 = ∞ . In
words, classify into the population with µi nearest of those to the left of x .

(b) Optimal classification rules are of the form,

φ(i|x) =
{

0 if x < µi

any if x ≥ µi.

In words, classify into any population with µi to the left of x .

6.2.3. We classify x into the population with the smallest value of (1/2)(x− µi)T (x− µi)− log pi . Let
Si denote the region for classification into population i . In all three cases, S1 is a square centered at the
origin, and S2 is the set {(x1, x2) : x1 > 0, |x2| < x1} with S1 removed, and each of S3 , S4 and S5 is the set
S2 rotated 90◦ , 180◦ and 270◦ respectively. The problem is to find the set S1 . We concentrate on finding
the boundary between S1 and S2 . We prefer 1 to 2 if (µ2 − µ1)T x > (1/2)(‖µ2‖2 − ‖µ1‖2) + log(pi/pj),
which reduces to x1 > .5 + log(p1/p2).

(a) We have log(p1/p2) = log 2 = .693 . . ., so that S1 is the square {(x1, x2) : |xi| < 1.193 . . .} . It is
interesting to note that Si does not contain µi for i = 2, 3, 4, 5.

(b) We have log(p1/p2) = 0, so that S1 is the unit square {(x1, x2) : |x1| < .5, |x2| < .5} .
(c) We have log(p1/p2) = log(1/2) = −.693 . . ., so that S1 is empty.

6.2.4. We rank the populations into the order (1,2) if

1
1 + (x1 − µ1)2

1
1 + (x2 − µ2)2

>
1

1 + (x1 − µ2)2
1

1 + (x2 − µ1)2
.

This is a quartic inequality in x1 , x2 , µ1 and µ2 . However, it gives equality if either x1 = x2 or µ1 = µ2 .
Thus both x1 − x2 and µ1 − µ2 must factor out. When this is done, we obtain, under the assumption
x1 < x2 and after some tedious algebra, the quadratic inequality,

(x1 − µ1)(x2 − µ2) + (x1 − µ2)(x2 − µ1) < 2.

In the special case µ1 = −1 and µ2 = 1, this inequality reduces to x1x2 < 2. If x1 > x2 , this inequality
must be reversed. This gives as the region in the plane for which we rank the populations into the order
(1,2) as {(x1, x2) : (x1 < x2 and x1x2 < 2) or (x1 > x2 and x1x2 > 2)} .

6.2.5. We are given µ1 < µ2 < · · · < µn . We are to show that if x1 ≤ x2 ≤ · · · ≤ xn , then

n∏
i=1

f(xi|µi) ≥
n∏

i=1

f(xi|µνi) (∗)

for any permutation, (ν1, ν2, . . . , νn) of (1, 2, . . . , n). We are given that the likelihood ratio, f(x|µ2)/f(x|µ1)
is nondecreasing in x when µ1 < µ2 . This means that if µ1 < µ2 and x1 ≤ x2 , then

f(x1 |µ1)f(x2|µ2) ≥ f(x1|µ2)f(x2 |µ1). (∗∗)



Let us say that the observations (x1, x2) are discordant with the parameters (µ1, µ2) if we have x1 < x2

and µ1 > µ2 or x1 > x2 and µ1 < µ2 . The inequality (**) says that if observations are discordant with
their parameters, then the density cannot decrease if we switch parameters. Therefore, in the product on
the right side of (*), if two observations are discordant with their parameters, we may switch them without
decreasing the product. This may be continued until all observations are concordant with their parameters.

6.2.6. The parameter space and the action space are both the set of permutations of (1, 2). For
θ = θ1 = (1, 2), we have

f(x1, x2|θ1) =
(

1
2π

)m

exp{−1
2
‖x1 − µ1‖2 − 1

2
‖x2 − µ2‖2}

and for θ = θ2 = (2, 1), we have

f(x1, x2|θ2) =
(

1
2π

)m

exp{−1
2
‖x1 − µ2‖2 − 1

2
‖x2 − µ1‖2}

One easily finds
f(x1, x2|θ1)/f(x1 , x2|θ2) = exp{(x1 − x2)T (µ1 − µ2)}.

We take action a = θ1 if this is greater than 1, or equivalently, if (x1 − x2)T (µ1 − µ2) > 0. Geometrically
speaking, we take a = θ1 if the angle between x1 −x2 and µ1 −µ2 is less than 90◦ , and a = θ2 if this angle
is greater than 90◦ .

6.2.7. (a) The prior distribution has density g(ν, θ1, . . . , θk) ∝ pν exp{−1
2

∑k
1 θT

i Σ−1θi} . The density of
the observations given the parameters is

fX1,...,Xk,Y (x1, . . . , xk, y|ν, θ1, . . . , θk) ∝ exp{−1
2

k∑
1

(xi − θi)T (xi − θi)−
1
2
(y − θν)T (y − θν)}

The posterior density is proportional to the product of these, namely

∝ pν exp{−1
2
[

k∑
1

θT
i Σ−1θi +

k∑
1

θT
i θi − 2

k∑
1

xT
i θi + θT

ν θν − 2yT θν ]}

= pν exp{−1
2
[
∑
i �=ν

θT
i (Σ−1 + I)θi − 2

∑
i �=ν

xT
i θi + θT

ν (Σ−1 + 2I)θν − 2(y + xν)T θν ]}

∝ pν exp{−1
2
[
∑
i �=ν

(θi − (Σ−1 + I)−1xi)T (Σ−1 + I)(θi − (Σ−1 + I)−1xi)]}

· exp{−1
2
(θν − (Σ−1 + 2I)−1(y + xν))T (Σ−1 + 2I)(θν − (Σ−1 + 2I)−1(y + xν))]}

· exp{1
2
[(xν + y)T (Σ−1 + 2I)−1(xν + y) − xT

ν (Σ−1 + I)−1xν]}

So the posterior distribution may be described as follows: ν is chosen with probability proportional to

p′ν ∝ pν exp{1
2
[(xν + y)T (Σ−1 + 2I)−1(xν + y) − xT

ν (Σ−1 + I)−1xν]},

and given ν , the parameters θ1, . . . , θk are independent with θi ∈ N ((Σ−1 + I)−1xi, (Σ−1 + I)−1) for i �= ν
and θν ∈ N ((Σ−1 + 2I)−1(y + xν), (Σ−1 + 2I)−1). We now simplify the expression for p′ν by writing the
exponent as a quadratic form in y . Let B = (Σ−1 + I)−1 − (Σ−1 + 2I)−1 .

p′ν ∝ pν exp{1
2
[xT

ν (Σ−1 + 2I)−1xν + 2yT (Σ−1 + 2I)−1xν − xT
ν (Σ−1 + I)−1xν]}

= pν exp{−1
2
[xT

ν Bxν − 2yT (Σ−1 + 2I)−1B−1Bxν ]}

∝ pν exp{−1
2
[(xν − B−1(Σ−1 + 2I)−1y)T B(xν − B−1(Σ−1 + 2I)−1y)]}

= pν exp{−1
2
[(xν − ŷ)T B(xν − ŷ)]}
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where ŷ = B−1(Σ−1 +2I)−1y = ((Σ−1 + I)−1(Σ−1 + 2I)− I)−1y . This is a simpler form than given in the
text.

(b) The Bayes rule chooses a as that integer ν for which p′ν is the largest, or equivalently, for which
(xν − ŷ)T B(xν − ŷ) is the smallest. When Σ = σ2I , then ŷ = ((1 + σ2)/σ2)y and B is a constant so the
Bayes rule chooses a equal to that ν for which xν is closest to ŷ .
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