
Solutions to Exercises 6.1.1 through 6.1.3.

6.1.1. f(x|θ) = ( 5
x
)θx(1 − θ)5−x has monotone likelihood ratio, so, if the loss function satisfies (6.3)

with θ1 = 1/3 and θ2 = 2/3, we want to find one-sided φj ’s such that Eθ1φ1(X) = Eθ1ψ1(X) and
Eθ2φ2(X) = Eθ2ψ2(X), where ψj(x) =

∑3
i=j+1 ψ(i|x) for j = 1, 2. The rule that improves on ψ(j|x) is

then φ(j|x) = φj−1(x)− φj(x). Note

Eθ2ψ2(X) = Pθ2{X = 2 or X = 5} =
(
5
2

)(2
3

)2(1
3

)3

+
(2
3

)5

=
72
243

.

To get Eθ2φ2(X) = 72/243, we start by putting φ2(5) = 1; this has probability 32/243. We need 40/243
more; if we put φ2(4) = 1, we would get 80/243 more. Therefore, the desired rule is: φ(3|x) = φ2(x) = 0
for x ≤ 4, φ(3|4) = 1/2, and φ(3|5) = 1. By symmetry, φ(1|x) = 0 for x ≥ 2, φ(1|1) = 1/2, and
φ(1|0) = 1. We find φ(2|x) by subtracting the sum from 1: φ(2|0) = φ(2|5) = 0, φ(2|1) = φ(2|4) = 1/2,
and φ(2|3) = φ(2|4) = 1.

6.1.2. (a) Consider the rule φa defined for a ≥ 0 as

φa(1|x) = I(−∞,−a)(x),

φa(2|x) = I(−a,a)(x),

φa(1|x) = I(a,∞)(x).

This rule has risk function

R(θ, φa) = (θ + 1)2Pθ(X < −a) + θ2Pθ(−a ≤ X ≤ a) + (θ − 1)2Pθ(a < X)

= θ2 + (2θ + 1)Φ(−θ − a) + (1− 2θ)(1 − Φ(−θ + a))

where Φ(z) is the distribution function of N (0, 1). We now show that for each θ in [−1, 1] R(θ, φa) is a
decreasing function of a for a < .549 · · ·. This shows that φa is not admissible for any a < .549 · · ·. The
derivative of R with respect to a ,

∂

∂a
R(θ, φa) = −(2θ + 1)

1√
2π
e−(θ+a)2/2 − (2θ − 1)

1√
2π
e−(θ−a)2/2

is negative if and only if
2θ[eaθ − e−aθ] < [eaθ + e−aθ]

which holds if and only if 2θ tanh(aθ) < 1. This is symmetric in θ so we restrict θ to be in the interval
[0, 1] . Since tanh(z) is an increasing function, we may solve for a to find a < tanh−1(1/2θ)/θ , where
we think of tanh−1(1/2θ) as +∞ if θ ≤ 1/2. But tanh−1(1/2θ)/θ is otherwise decreasing in θ so the
worst case occurs at θ = 1. Hence, R(θ, φa) is a decreasing function of a for each θ in [−1, 1] provided
a < tanh−1(1/2) = .549 · · ·.

(b) Now suppose that Θ = (−∞,∞). To show that every monotone rule is admissible, it is sufficient to
show that for a given monotone φ there does not exist a better monotone ψ , because Theorem 6.1.1 implies
that the monotone rules form an essentially complete class for this problem. Suppose that

ψ(1|x) = I(−∞,a1)(x) ψ(2|x) = I(a1,b1)(x) ψ(3|x) = I(b1,∞)(x)

φ(1|x) = I(−∞,a2)(x) φ(2|x) = I(a2,b2)(x) φ(3|x) = I(b2,∞)(x)

and that ψ is as good as φ , where a1 < b1 and a2 < b2 . In terms of the risk functions, we have for all θ ,

(θ + 1)2Pθ(X < a1) + θ2Pθ(a1 < X < b1) + (1− θ)2Pθ(b1 < X)

≤ (θ + 1)2Pθ(X < a2) + θ2Pθ(a2 < X < b2) + (1 − θ)2Pθ(b2 < X)



or, subtracting θ2 from both sides,

(2θ + 1)Pθ(X < a1) + (1− 2θ)Pθ(X > b1) ≤ (2θ + 1)Pθ(X < a2) + (1− 2θ)Pθ(X > b2). (∗)

We use the fact that the normal tails decrease to zero very rapidly, namely, P0(X > x) ∼ (1/x)e−x2/2/
√
2π .

This follows from

xex2/2

∫ ∞

x

e−z2/2 dz = x

∫ ∞

0

e−u(x2 + 2u)−1/2 du =
∫ ∞

0

e−u(1 + 2(u/x2))−1/2 du→ 1

as x → ∞ . Suppose that a1 < a2 . Then subtract 2θ + 1 from both sides of (*), divide both sides
by Pθ(X > a1) and let θ → −∞ . The left side tends to +∞ and the right side tends to zero. This
contradiction shows that a1 ≥ a2 . Similarly, letting θ → +∞ shows that b1 ≤ b2 . Now suppose that
a2 < a1 . Then (*) implies that b1 �= b2 , and (*) reduces to

(2θ + 1)Pθ(a2 < X < a1) + (1− 2θ)Pθ(b1 < X < b2) ≤ 0.

This inequality is clearly false for any θ such that Pθ(a2 < X < a1) = Pθ(b1 < X < b2). But such a θ
exists since both sides of this equation are continuous in θ and the left side is less than (resp. greater than)
the right for θ sufficiently close to −∞ (resp. +∞). Hence a1 = a2 and by symmetry, b1 = b2 .

6.1.3. (a) We must find the value of x2 that minimizes (6.10). The left side of the max in (6.10) is
decreasing in x2 for all θ0 and, if L = 1, the right side is increasing in x2 . This max is minimized therefore
when x2 is chosen so that the left side is equal to the right side, that is when Pθ0{X < x2} + Pθ0{X >
x2} = Pθ0{X < x2} . For the logistic distribution, this is

(1 + e−(−x2−θ0))−1 + 1− (1 + e−(x2−θ0))−1 = (1 + e−(x2−θ0))−1.

This reduces to 2e−x2 + eθ0 = ex2 . For given θ0 , this may be solved numerically for x2 . For example, if
θ0 = .68437 . . ., then x2 = 1.0000 . . ., and if θ0 = 1.96268 . . ., then x2 = 2.0000 . . ..

(b) For L = 2, the minimum of (6.10) occurs when x2 = θ0 .
(c) We will show the risk is made smaller if we increase x2 slightly. The risk function of the rule (6.9)

with x1 = −x2 as given above (6.10) becomes for the logistic distribution

R(θ, φ) =
{
(1 + ex2+θ)−1 + 1− (1 + e−x2+θ)−1 if 0 ≤ θ ≤ θ0
(L − 1)(1 + ex2+θ)−1 + (1 + e−x2+θ)−1 if θ > θ0.

For all θ ≤ θ0 , the risk is decreasing in x2 . We complete the proof by showing that for all θ > θ2 , the
derivative of R with respect to x2 is negative if L is sufficiently large. For θ > θ2 , this derivative is

∂R

∂x2
= − (L− 1)ex2+θ

(1 + ex2+θ)2
+

e−x2+θ

(1 + e−x2+θ)2
.

This is nonpositive if (L − 1)ex2+θ(1 + e−x2+θ)2 ≥ e−x2+θ(1 + ex2+θ)2 , which holds if

(L− 1)(e2x + 2ex2+θ + e2θ) ≥ 1 + 2ex2+θ + e2x2+2θ.

If L > 2, the first two terms on the left dominate the first two terms on the right, and if L − 1 ≥ e2x2 ,
the third term on the left also dominates the third term on the right for all θ , completing the proof. Note,
however, that the inequality in the text, L− 1 ≥ ex2 , must be corrected to L − 1 ≥ e2x2 .

2


