Solutions to Exercises 5.9.3 through 5.9.9.

5.9.3.
$$S^{2} = \sum \sum (X_{ij} - \xi - \mu_{i} - \eta_{j})^{2}$$

$$= \sum \sum [(X_{ij} - \overline{X}_{i.} - \overline{X}_{.j} - \overline{X}_{..}) + (\overline{X}_{i.} - \overline{X}_{..} - \mu_{i}) + (\overline{X}_{.j} - \overline{X}_{..} - \eta_{j}) - (\overline{X}_{..} - \xi)]^{2}$$

$$= \sum \sum (X_{ij} - \overline{X}_{i.} - \overline{X}_{.j} - \overline{X}_{..})^{2} + \sum \sum (\overline{X}_{i.} - \overline{X}_{..} - \mu_{i})^{2}$$

$$+ \sum \sum (\overline{X}_{.j} - \overline{X}_{..} - \eta_{j})^{2} + \sum \sum (\overline{X}_{..} - \xi)^{2}$$
+ six cross product terms.

We must show that all cross product terms are zero. This is illustrated for the first term.

$$2\sum \sum (X_{ij} - \overline{X}_{i.} - \overline{X}_{.j} - \overline{X}_{..})(\overline{X}_{i.} - \overline{X}_{..} - \mu_i) = \sum_{i=1}^{I} (\overline{X}_{i.} - \overline{X}_{..} - \mu_i) \sum_{j=1}^{J} (X_{ij} - \overline{X}_{i.} - \overline{X}_{.j} - \overline{X}_{..}) = 0$$

The inside summation over j is zero for all i because $\sum_{j} X_{ij} = J\overline{X}_{i}$ and $\sum_{j} \overline{X}_{.j} = J\overline{X}_{..}$

5.9.4. (a) We expand S^2 as follows.

$$S^{2} = \sum \sum \sum (X_{ijk} - \xi - \mu_{i} - \eta_{j} - \delta_{ij})^{2}$$

$$= \sum \sum \sum [(X_{ijk} - \overline{X}_{ij.}) - (\overline{X}_{ij.} - \xi - \mu_{i} - \eta_{j} - \delta_{ij})]^{2}$$

$$= \sum \sum \sum (X_{ijk} - \overline{X}_{ij.})^{2} + \sum \sum \sum (\overline{X}_{ij.} - \xi - \mu_{i} - \eta_{j} - \delta_{ij})^{2}$$

$$+ 2 \sum_{i} \sum_{j} (\overline{X}_{ij.} - \xi - \mu_{i} - \eta_{j} - \delta_{ij}) \sum_{k} (X_{ijk} - \overline{X}_{ij.})$$

The last term is zero since $\sum_{k} X_{ijk} = K\overline{X}_{ij.}$ for all i and j. The middle term may be expanded into a sum of squares using the identity (5.128) (or Exercise 3) with X_{ij} replaced by $\overline{X}_{ij.} - \delta_{i,j}$.

(b) Using this identity, we find

$$\min_{H} S^2 = \sum \sum \sum (X_{ijk} - \overline{X}_{ij.})^2.$$

Similarly, putting $\mu_i = 0$ in the formula for part (a), we find

$$\min_{H_0} S^2 = \sum \sum \sum (X_{ijk} - \overline{X}_{ij.})^2 + \sum \sum \sum (\overline{X}_{i..} - \overline{X}_{...})^2.$$

The best invariant test rejects H_0 if

$$F = \frac{(\min_{H_0} S^2 - \min_H S^2)/r}{\min_H S^2/(n-k)} = \frac{\sum \sum \sum (\overline{X}_{i..} - \overline{X}_{...})^2/(I-1)}{\sum \sum \sum (X_{ijk} - \overline{X}_{ij.})^2/(IJ(K-1))}$$

is too large. Under H_0 , this statistic has an F-distribution with I-1 and IJ(K-1) degrees of freedom. Under the general hypothesis, H, it has a noncentral F-distribution with I-1 and IJ(K-1) degrees of freedom and noncentrality parameter γ^2 , where γ^2 is computed as the numerator sum of squares divided by σ^2 , with each X_{ijk} replaced by its expectation. This results in replacing $\overline{X}_{i...}$ by $\mu_i + \xi$ and $\overline{X}_{...}$ by ξ . We find

$$\gamma^2 = \frac{1}{\sigma^2} \sum \sum \sum \mu_i^2 = \frac{1}{\sigma^2} JK \sum_i \mu_i^2.$$

(c) If we put $\delta_{ij} = 0$ in the identity of part (a), we find $\min_{H_0} S^2 = \sum \sum \sum (X_{ijk} - \overline{X}_{ij.})^2 + \sum \sum \sum (\overline{X}_{ij.} - \overline{X}_{i..} - \overline{X}_{.j.} + \overline{X}_{...})^2$ so the best invariant test of no interaction effect rejects H_0 if

$$F = \frac{\sum \sum \sum (\overline{X}_{ij.} - \overline{X}_{i..} - \overline{X}_{.j.} + \overline{X}_{...})^2 / ((I - 1)(J - 1))}{\sum \sum \sum (X_{ijk} - \overline{X}_{ij.})^2 / (IJ(K - 1))}$$

is too large. Under the general hypothesis, this has a noncentral F-distribution with (I-1)(J-1) and IJ(K-1) degrees of freedom and noncentrality parameter

$$\gamma^2 = \frac{1}{\sigma^2} \sum \sum \sum \delta_{ij}^2.$$

5.9.5. (a) $S^2 = \sum (X_i - \beta_0 - \beta_1 z_i)^2$. We may find the least squares estimates of β_0 and β_1 by equating the partial derivatives of S^2 to zero.

$$\frac{\partial S^2}{\partial \beta_0} = -2\sum_{i} (X_i - \beta_0 - \beta_1 z_i) = -2(\sum_{i} X_1 - n\beta_0) = 0$$

since $\sum z_i = 0$, and

$$\frac{\partial S^2}{\partial \beta_1} = -2\sum_{i} (X_i - \beta_0 - \beta_1 z_i) z_i = -2(\sum_{i} X_i z_i - \beta_1 \sum_{i} z_i^2) = 0.$$

This gives $\hat{\beta}_0 = (1/n) \sum X_i$ and $\hat{\beta}_1 = \sum X_i z_i / \sum z_i^2$ as the least squares estimates.

- (b) Under H_0 , $S^2 = \sum (X_i \beta_0)^2$ is minimized at $\hat{\beta}_0 = (1/n) \sum X_i = \hat{\beta}_0$. (c) The UMP invariant test rejects H_0 if

$$F = \frac{\sum (\hat{\beta}_0 - \hat{\beta}_0 - \hat{\beta}_1 z_i)^2 / 1}{\sum (X_i - \hat{\beta}_0 - \hat{\beta}_1 z_i)^2 / (n - 2)} = \frac{(n - 2)\hat{\beta}_1^2}{\sum (X_i - \hat{\beta}_0 - \hat{\beta}_1 z_i)^2}$$

is too large. Under H, F has a noncentral F-distribution with 1 and n-2 degrees of freedom and noncentrality parameter, $\gamma^2=(1/\sigma^2)(\sum(\beta_0+\beta_1z_i)z_i/\sum z_i^2)^2=(1/\sigma^2)\beta_1^2$.

5.9.6. (a) The least squares estimates are the values of α , β and η_j that minimize $S^2 = \sum \sum (X_{ij} - \alpha - \beta z_i - \eta_j)^2$ subject to $\sum_j \eta_j = 0$. We use Lagrange multipliers. The Lagrangian is $L = S^2 + \lambda \sum \eta_j$.

$$\frac{\partial L}{\partial \alpha} = -2 \sum \sum (X_{ij} - \alpha - \beta z_i - \eta_j) = -2(\sum \sum X_{ij} - IJ\alpha) = 0$$

using $\sum z_i = 0$ and $\eta_i = 0$. This gives $\hat{\alpha} = \overline{X}_{..}$.

$$\frac{\partial L}{\partial \beta} = -2\sum \sum (X_{ij} - \alpha - \beta z_i - \eta_j)z_i = -2(\sum \sum X_{ij}z_i - IJ\beta) = 0$$

using $\sum z_i^2 = 1$. This gives $\hat{\beta} = (1/I) \sum z_i \overline{X}_i$.

$$\frac{\partial L}{\partial \eta_j} = -2\sum_{i=1}^{I} (X_{ij} - \alpha - \beta z_i - \eta_j) + \lambda = -2I(\overline{X}_{.j} - \alpha - \eta_j) + \lambda = 0.$$

We may find the Lagrange multiplier, λ , by summing over j. This gives $\lambda = 2I(\overline{X}_{ij})$. Substituting this value into the equation gives $\hat{\eta}_j = \overline{X}_{.j} - \overline{X}_{.i}$ as the least squares estimate of η_j . Under H_0 the least squares estimates are easily found to be $\hat{\hat{\alpha}} = \overline{X}_{..} = \hat{\alpha}$ and $\hat{\beta} = (1/I) \sum z_i \overline{X}_{i.} = \hat{\beta}$. The UMP invariant test of H_0 rejects H_0 if

$$F = \frac{\sum \sum \hat{\eta}_{j}^{2}/(J-1)}{\sum \sum (X_{ij} - \hat{\alpha} - \hat{\beta}z_{i} - \eta_{j})^{2}/(IJ - J - 1)}$$

is too large.

(b) Under the general hypothesis, F has a noncentral F-distribution with J-1 and IJ-J-1 degrees of freedom and noncentrality parameter, $\gamma^2 = (1/\sigma^2) \sum \sum \eta_i^2$.

5.9.7. Under the general linear hypothesis, (5.115), the log likelihood function of θ and σ is

$$\log f(\mathbf{x}|\theta,\sigma) = -n\log(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^2}(\mathbf{x} - \mathbf{A}\theta)^T(\mathbf{x} - \mathbf{A}\theta).$$

For each fixed σ , the maximum of $\log f$ over θ occurs at any value of θ that minimizes $(\mathbf{x} - \mathbf{A}\theta)^T (\mathbf{x} - \mathbf{A}\theta) = (\mathbf{x} - \xi)^T (\mathbf{x} - \xi)$. Since such values are independent of σ , any maximum likelihood estimate of θ is also a least squares estimate of θ and conversely. Therefore, if $\hat{\theta}$ denotes a maximum likelihood estimate, $\hat{\xi} = \mathbf{A}\hat{\theta}$ is both the maximum likelihood estimate and the least squares estimate of ξ .

- 5.9.8. We have r=I-1, k=I and $n=n_1+\cdots+n_I$. The distribution of the F-statistic under the general hypothesis is noncentral F-distribution, $F_{r,n-k}(\gamma^2)=F_{I-1,n-I}(\gamma^2)$. To find γ^2 , we use (5.126). The numerator sum of squares is $\sum_i \sum_j (\overline{X}_{i\cdot} \overline{X}_{\cdot\cdot})^2 = \sum_i n_i (\overline{X}_{i\cdot} \overline{X}_{\cdot\cdot})^2$. Replacing each X_{ij} in this by its expectation θ_i , we obtain $\gamma^2=(1/\sigma^2)\sum_i n_i(\theta_i-\bar{\theta})^2$.
- 5.9.9. (a) $S^2 = \sum \sum \sum (X_{ijk} \xi \lambda_i \mu_j \eta_k)^2 = \sum \sum \sum (X_{ijk} \overline{X}_{i..} \overline{X}_{..k} + 2\overline{X}_{...})^2 + \sum \sum \sum (\overline{X}_{i..} \overline{X}_{...} \lambda_i)^2 + \sum \sum \sum (\overline{X}_{..} \overline{X}_{...} \mu_j)^2 + \sum \sum \sum (\overline{X}_{..k} \overline{X}_{...} \eta_i)^2 + \sum \sum \sum (\overline{X}_{...} \xi)^2.$ (b) Under H, the least squares estimates are $\hat{\xi} = \overline{X}_{...}$, $\hat{\lambda}_i = \overline{X}_{i..} \overline{X}_{...}$, $\hat{\mu}_j = \overline{X}_{.j.} \overline{X}_{...}$, and $\hat{\eta}_k = \overline{X}_{..k} \overline{X}_{...}$ Under H_0 , they are the same except that $\hat{\lambda}_i = 0$. So the best invariant test of H_0 rejects H_0 when

$$F = \frac{\sum \sum \sum (\overline{X}_{i..} - \overline{X}_{...})^2/(I-1)}{\sum \sum \sum (X_{ijk} - \overline{X}_{i..} - \overline{X}_{.j.} - \overline{X}_{..k} + 2\overline{X}_{...})^2/(IJK - I - J - K + 2)}$$

is too large. Under H, this has a noncentral F-distribution with I-1 and IJK-I-J-K+2 degrees of freedom and noncentrality parameter $\gamma^2=(1/\sigma^2)\sum\sum\sum\sum_i \lambda_i^2$.