Solutions to Exercises 5.2.2 through 5.2.11.

5.2.2. To show that (6,60 + 1) has monotone likelihood ratio, take ¢; < 65 and consider two cases.
Case 1: 61 +1 < 65. The likelihood ratio is

0, ifoh <z <6 +1,;
L6, 05) = ﬂx'g” z{oo, if 0y < 2 < 0y + 1;
f(x]02) undefined, otherwise.
Case 2: 01 <0y <0 +1.
0, if 07 < x < by
L(a 9)_f($|91)_ 1, if b <z <6+ 1;
DT (]6y) T ) o0 0 +1<z<0y+1;

undefined, otherwise.

In either case, the likelihood ratio is nondecreasing on the set where it is defined. (This analysis is for a
sample of size one. The concept of monotone likelihood ratio is a one dimensional concept. The MLR theory
cannot be applied for a sample of size n, because sufficiency only reduces the problem to a two-dimensional
sufficient statistic, (min X;, maxX;).)

Here is a counterexample to the second statement of Theorem 5.2.1 when the size of the test is zero. In
the U(6,0 + 1) problem above, the test ¢1(x) = I(z > 6y + 2) is a test of the form (5.24) and it has size
zero. But the test ¢o(z) = I(z > 6y + 1) also has size zero and is better than ¢;. It has strictly greater
power for 6y < 6 < 0y + 2.

5.2.3. Fix 61 < 5. Then

+o0 if0; <x <6y
f(x]6r) undefined  if x > 65.

flx]a) {6(92)/6(91) if v < 6,

Since this is non-decreasing in x for z < 3, this family has monotone likelihood ratio. Note that the class
of uniform distributions, ¢(0, 6), is a special case of this family, with ¢(f) = 1/6 and h(z) = (9,0 ().

5.2.4. Let f(x]0) = exp{—|z — 0]/8}/(28) be the density of X, where § is known. For fixed 61 < 65,

—(02—01)/8 if 2]
e 1mHr <t
H@lfs) _ ) eamta-00/8 it <z < 0,

if x > 0.

F@lf) ) o0
This is nondecreasing in x, so the family has monotone likelihood ratio.
5.2.5. The density is f(z]0) = e~ @15 o) (z). Let 1 < 6. Then

0 if0 <z <0y
ef2—0 if 05 < .

f(x|62) e—(x—92)1(92 00) (z) undefined if x <6,
J(ler) e, (@)

This is clearly nondecreasing on its domain of definition, which is x > 6.

5.2.6. The Cauchy distribution, C(0,6), has density f(z|0) = . If 0 <6y <6, then

m(02 4 22)

f(xlba) _ 02(6% + 2°)

f(xl6r)  01(63 + =)

This is defined for all =, but it has a minimum at « = 0, is decreasing on (—o0,0) and increasing on (0, c0).
So it does not have monotone likelihood ratio.
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But if T = | X|, then the density of T is fr(t|0) = ml[()m)(t). For 0 < #; < 03, we have

fr(ta) — 62(6% +t°)

Jr(tl6y) 0103 +t2)

on its domain of definition, which is [0,00). On this interval, the ratio is increasing.

5.2.7. (a) The distribution of T = max(X;) has density
fr(t|0) =nt" 107 "1(0 < t < 6)

The class of Neyman-Pearson best tests have the form given in (5.7) for some k > 0 or (5.8). In our case,
this reduces to the class of tests

1 if g <t <6
) 600={ 2 oo s

where 0 < v(¢) <1 is arbitrary and determines the size of the test. Every best test is of this form (up to a
set of probability zero), and each of these tests is best of its size.
(b) A test, ¢(t), that is in this class for all 1 > 6y is UMP of its size for testing Hy : 6 = 6y against
H} : 61 > 0y. This is the class of tests,
1 if t > 6y
@) o1 ={ HiZe

for arbitrary 0 < ~(¢) < 1.
(¢) The test
1 ift>¥6
t) = .
¢ (t) {alug%
is in this class and so is UMP for testing Hy against H;. Moreover, the power function, Eg¢(T) is a
constant, «a, for 8 < 6, and so this test is of size « for testing H{ : 8 < 6. Since such tests form a subclass
of the tests of size « for testing Hp, this test is also UMP for testing H|, against Hj.
Since this test is UMP, we cannot improve on the power at any 6 > 6, without decreasing the size at
0 = 6y. However, the test,

(bl(t):{l ift>(1— {/&)60

0 otherwise

is also UMP of size « for testing H|, vs H{, but for 0 < a < 1 the size is smaller than « for all § < 6. (In
fact the size is zero for 6 < (1 — {/a)fp.) Thus, if 0 < @ < 1, ¢ is not admissible since ¢; is better.
(d) The class of best tests for testing § =6y vs 6 = 61 for 61 < 0y are tests of one of the forms

_Jo for 6 <t <t 1 ift <6
(3) o(t) = {'y(t) otherwise. ot o(t) = {'y(t) otherwise

For every 6, < 6y, the test

_J1 ifﬁ>900rt<b=90{’/&
@@_{01M<t<%

is of one of these two forms, and, in addition, is of the form found in part (b). Thus, ¢2 is UMP of its size
for testing Hy against the two-sided hypothesis, Hj : 6 < . It is easy to check that this test has size «.
(e) For use later in Exercise 5.8.7, we generalize (5.30) slightly to

f(@]0) = c(0)h(2)](—co,x(0)) (7)

2



where 7(6) is an increasing function of 6. Then the distribution of T = max{X;, ..., X,,} has density

t n—1
fr(t|d) =c(6)"n (/ h(x) dx) h()I(t < w(0))

—o0
The class of Neyman-Pearson best tests of Hy : 8§ = 6y against Hy : § = 61, where 61 > 6, consists of
tests of form (1) with 6y and 6; replaced by 7w(6y) and w(61) respectively. The UMP tests of Hy against
Hj : 0 > 0y are still those tests of the form (2) with 6y replaced by 7(6p). The best tests of § = 6y against
0 =6, for 6; < 6y are of the form (3) with 6y and 6, replaced byw(6y) and 7(61) respectively. The test

1 ift>m(Bp)ort<d
¢2(t>_{o ith <t < 7(6o)

where b < w(6p), is of both forms and so is UMP of its size for testing Hy against H : 8 # 6. To achieve
size «, b must satisfy () f_boo h(z)dx = {/a.
5.2.8. (a)

R(bluff, ¢) = P[(a + b)Ex, (1 — ¢(X)) + aEx, ¢(X)] + (1 = P)[=(a + b)Ex, (1 — ¢(X)) + aEx,¢(X)]
= (2P = 1)(a +b) — PbEx, ¢(X) + (1 — P)(2a + b)Ex, ¢(X)
R(honest, ¢) = P[(a+b)Ex, (1 — (X)) + aEx, ¢(X)] — a(1 - P)
= a(2P —1) + bP — bPE,, ¢(X)

(b) The minimax rule is that ¢ that minimizes the maximum of R(bluff,¢) and R(honest,¢). For
a fixed Ey,¢(X), both R(bluff,$) and R(honest, ) are minimized by maximizing Ey, #(X), so that the
minimax rule must be a best test of its size for testing Hy against Hy. Thus, if ¢, denotes a best test of size
«, we restrict attention to the class of tests ¢, and find that o that minimizes the maximum risk. It is easy
to check that if Ex,¢q(X) = a =b/(2a +b), then R(bluff, $,) = R(honest, ¢,) = V', say. Moreover, since
Ex, ¢a(X) is increasing in «, R(honest, ¢,,) is decreasing in « so that R(honest, ¢,) >V for a < b/(2a+Db).
This rule will therefore be minimax if we show that R(bluff, ¢,) >V for o > b/(2a + b).

The general argument of Lemma 1.7.1 shows that ¢;(«) = R(bluff, ¢) is convex in «: If ¢y achieves
the minimum of R(bluff, ¢,,) and ¢; achieves the minimum of R(bluff, ¢,,), then for arbitrary = € (0, 1),
the rule ¢ that uses ¢y with probability m and ¢; with probability 1 — 7 has size « = wag + (1 — 7)oy
and R(bluff, ¢) = 7R(bluff, ¢o,) + (1 — 7) R(bluff, ¢, ). But the optimal rule can do at least this well; that
is R(bluff, ¢ragt(1-m)ar) < TR(bIUfE, o) + (1 — m) R(bluff, ¢, ).

There remains to show that ¢1(0) < ¢g1(b/(2a + b)). Since g1(0) = (2P — 1)(a + b) — PbEy, ¢o(X) and
91(b/(2a+b)) = (2P —1)(a+b) = PbEx, ¢v/(2a+)(X) +(1—P)(2a+b)b/(2a+b) , we have g1(0) < g1(b/(2a+b))
if and only if Ex, ¢p/(24+5)(X) — Ex,¢0(X) < (1 — P)/P. If P < 1/2, this is always true.

It is interesting to note that II's optimal strategy is independent of P and \;. It is exactly the UMP
test of Hy vs Hf : A < X\g. On the other hand, Player I’s optimal strategy does depend on these quantities.
This strategy is to bluff with probability 1—g(b/(2a+b))/((1—P)(2a+0b)), where g represents a derivative
of g1 in the sense of being the slope of any supporting hyperplane of the graph of ¢g; .

5.2.9. Let 6; < 65. Then,

fx]6r) (14 er702)2

02—01

Jelbs) _ (L4 4y, (14ey)*1
1+y c

where y = e* 7% and c=e . It is easy to see that this ratio is increasing in y since ¢ > 1. But since y
is increasing in z, the ratio is also increasing in x.

5.2.10. Given f(x|0) = c(0)h(x)I(x, (6),xs0)) (), With 71(0) < m2(f), both nondecreasing in 6, we

compute the likelihood ratio for fixed 6; < 65 in two cases. First, if 71(62) < m2(01) then
0 if7r1(91) <J?<7T1(92)
f(x]62)  } c(02)/c(61) if m1(6) < & < ma(61)
f(x|91) —+o00 if7r2(91) <x <7T2(92)

undefined  otherwise.



Second, if 71 (62) > m2(0;) then

f(z|02) 0 if m1(61) < < m2(61)
Fzl61) ~ 00 if m1(02) < & < m1(62)
! undefined otherwise.

In either case, the ratio is nondecreasing in = in the domain of definition of the ratio.

5.2.11. The likelihood ratio for testing H/, : = 0 against a simple alternative 6 > 0 is

flx, ..., xn|0)/f(z1,...,2,]0) =

1 ifo<ty<ta<l.
I0<t, <ty <1) : pen

I(9<t1<t2<9+1)_{0 if 1, <0
oo ifty>1

The class of best tests of H{, against a fixed 6 > 0 consists of the tests of the two forms

1 ift2> 1 .

. 1 f
d(t1,t2) = {any ifO<t; <ta<1 or (1, t0) = {an 1ff <<té
0 ifti <6 yorhse

The tests of this form for all § > 0 are

_J1 ifty >korta>1
¢0(ﬁ1,t2)—{0 ifty <kandts <1

for some k > 0. These are the UMP tests for testing H| against H;y : § > 0. To show they are UMP for
testing Hy against Hi, we use the argument of the text: these tests have nondecreasing power function
on the set (—o0,0] and so are UMP out of the smaller class of tests that have size no greater than « on
(—00,0]. To find k to achieve a given a, note a = Po(Ty > k) = (1 — k)", so that k=1 — a!/".



