
Solutions to the Exercises of Section 4.7.

4.7.1. If the coin comes up heads, then d2 is minimax. It guarantees the statistician a loss of (at most)
1 − ε , and nature by choosing θ = 1 can guarantee the statistician’s loss to be at least 1 − ε . Similarly, if
the coin comes up tails, then d4 is minimax. Nature can guarantee the statisticain’s loss is at least 1 − ε
by choosing θ = 0. The combined rule, choose d2 if the coin comes up heads, and d4 if the coin comes up
tails, guarantees a loss of (at most) 1 − ε , but is not minimax or admissible in the unconditional problem.
The opposite rule, choose d1 if the coin comes up heads, and d3 if the coin comes up tails, guarantees an
expected loss of (at most) 1/2 < 1− ε , no matter what the true value of θ is. In the unconditional problem,
it is assumed that nature cannot choose θ based on the outcome of the toss.

4.7.2. All three problems are invariant under location change. The best invariant estimate of θ is
d0(X) = X1 − b0(Y), where Y2 = X2 − X1, . . . , Yn = Xn − X1 , and b0(Y) is that number that minimizes
E0(L(X1 − b0)|Y). We find the conditional density of X1 given Y when θ = 0 using (4.56). The joint
density of the Xi when θ = 0 is
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The joint density of X1, Y2, . . . , Yn when θ = 0 is
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where we are using the dummy variable y1 = 0. The conditional density of X1 given Y2, . . . , Yn is this
divided by a function of y2, . . . , yn (the marginal density). So we see that this conditional density is the
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(a) For squared error loss, the best invariant estimate of θ is X1 minus the mean of this distribution.
This mean is the midpoint of the interval (−1
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(b) For absolute error loss, the best invariant estimate is X1 minus the median of this distribution.
This gives the same estimate as in (a).

(c) For L(a, θ) = I(|a − θ| > c), the best invariant estimate is X1 minus the midpoint of the modal
interval of length 2c (see Exercise 1.8.5). Since the density is flat, there may be many such modal intervals.
But since the density is centered at the mean, we may always use the mean as the midpoint of the modal
interval of length 2c for any value of c > 0. This leads to the esitmate of part (a) as a best invariant
estimate. However, when c is small, there are many other best invariant estimates.

4.7.3. The parameter θ is a location parameter for the distribution of X, so the Pitman estimate is
given by (5.58):
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Make the change of variable y = θ − X for θ .

θ̂ = X+
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where min(Xi) = min{X1, . . . , Xn} , X = 1
n

∑n
i=1 Xi , and Φ(·) is the distribution function of N (0, 1).

4.7.4. Consider the distribution of X1, Y2, . . . , Yn , where Y2 = X2/X1, Y3 = X3/X1, . . . , Yn = Xn/X1 .
The distribution of Y = (Y2, . . . , Yn) does not depend on θ since Yj = (Xj/θ)/(X1/θ), and the distribution
of X1 given Y has θ as a location parameter. Since the loss function is a function only of a/θ , L(θ, a) =
W (a/θ), the best invariant estimate of θ for the conditional problem given Y is

d0(X) =
X1

b0(Y)

where b0(Y) minimizes E1(W (X1/b)|Y). (E1 stands for the expectation when θ = 1.) For the special case
W (a/θ) = (a− θ)2/θ2 , we have that b0(Y) is that value of b that minimizes the expected weighted squared
error, E1[(X1 − b)2/b2|Y] . Thus,
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.

The density of X1, Y2, . . . , Yn when θ = 1 is

fX1,Y2,...,Yn(x1, y2, . . . , yn) = f(x1, y2x1, . . . , ynx1)xn−1
1

so that the conditional distribution of X1 given Y when θ = 1 is
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Hence, the best invariant estimate is
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where we have made the change of variable of integration, θ = X1/x1 .

4.7.5. The conditions of problem 4.7.4 are satisfied with

f(x1, . . . , xn) =
n∏

i=1

I(1 ≤ xi ≤ 2),

so the best invariant rule is

d0(X) =

∫ ∞
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.

If U = min(Xi) and V = max(Xi), then

f(x1/θ, . . . , xn/θ) = I(V/2 ≤ θ ≤ U).
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Hence, the numerator of d0(X) is

∫ ∞

0

θ−(n+2)f(X1/θ, . . . , Xn/θ) dθ =
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and similarly the denominator is
1
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so that the best invariant rule is

d0(X) =
(n+ 2)[(V/2)−(n+1) − U−(n+1)]
(n+ 1)[(V/2)−(n+2) − U−(n+2)]

.

4.7.6. Suppose X1, . . . , Xn has density (4.48) (note the correction), and suppose that u(x) is an
arbitrary but fixed invariant function ( for example, u(X) = X). Then u(x1−c, . . . , xn−c) = u(x1, . . . , xn)−c
identically in x1, . . . , xn and c . If we replace c by x1 , we find that u(0, x2−x1, . . . , xn−x1) = u(x1, . . . , xn)−
x1 , or, u(x) = x1 − u(0, y2, . . . , yn), where yi = xi − x1 for i = 2, . . . , n . Thus, the invariant rule (4.49)
can be written as u(X) plus some function of the vector of differences, Y , say d0(X) = u(X) + b′0(Y). The
best invariant rule is found with b′0(Y) as that number b that minimizes E0(l(u(X) − b)|Y).
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