
Solutions to Exercises 4.6.1 to 4.6.7, and 4.6.9 to 4.6.12.

4.6.1. Sufficiency reduces the problem to choosing rules based on T = min{X1, . . . , Xn} . This has
distribution with density, f(t|θ) = n exp{−nt}I(t > θ) for which θ is a location parameter.

(a) E0(T − b)2 is minimized by b = E0T = 1/n . So the best invariant estimate is d(T ) = T − 1/n .
(b) E0|T − b| is minimized if b = the median of the distribution of T when θ = 0. Since 1/2 =∫ ∞

b
n exp{−nt} dt = exp{−bn} gives b = log(2)/n as the median. Hence, d(T ) = T − log(2)/n is the best

invariant estimate.
(c) The best invariant estimate of θ is d(T ) = T − b where b is the midpoint of the modal interval of

length 2c of the distribution of T when θ = 0. Since this density is decreasing from zero to infinity, the
modal interval of length 2c is the interval (0, 2c). This gives d(T ) = T − c as the best invariant estimate.

4.6.2. Y = min1≤i≤nXi is a sufficient statistic for θ , and P(Y ≥ θ + k) = P(X1 ≥ θ + k)n = pkn so
that Y − θ has a geometric distribution with parameter pn .

(a) The best invariant estimate of θ is Y − b where b is chosen to minimize E0(Y − b)2 . This occurs if
b = E0Y = pn/(1 − pn).

(b) In this case, the best invariant estimate of θ is Y −b where b minimizes P0(Y �= b) or, equivalently,
maximizes P0(Y = b); thus, b is the mode of the distribution of Y when θ = 0. This clearly gives b = 0.
Here, the best invariant estimate of θ is the maximum likelihood estimate.

4.6.3. We may reduce the problem by sufficiency to consideration of estimates that are functions of
Sn = X1 + · · · + Xn which has the gamma distribution G(nα, β). Thus, we solve the problem for a single
observation, X ; the solution for the general problem is found by replacing X by Sn and α by nα .

(a) The problem is invariant under change of scale and the best invariant estimate is d(X) = X/b where
b minimizes Eβ=1(X/b− 1)2 . This leads to b = EX2/EX = (α + α2)/α = α + 1.

(b) To find b that minimizes E((X/b)− 1− log(X/b)|β = 1), we take a derivative with respect to b , set
to zero and find b = EX = α . The best invariant estimate is d(X) = X/α .

4.6.4. The minimum, Z = minXi , is a sufficient statistic for θ and has density

fZ(z|θ) =
nθn

zn+1
I(θ,∞)(z),

with θ as a scale parameter. In (a), (b), and (c), the loss is of the form L(θ, a) = L(a/θ), so these
problems are invariant under change of scale and the best invariant rule is d(z) = z/b0 , where b0 minimizes
Eθ=1L(Z/b).

(a) For L(θ, a) = ((a/θ) − 1)2 , we have b0 = E1Z
2/E1Z = (n/(n − 2))/(n/(n − 1) = (n − 1)/(n− 2).

So the best invariant rule is d(z) = (n− 2)Z/(n− 1).
(b) E1(| logZ − log b|) is minimized by taking log b to be the median of the distribution of logZ when

θ = 1, which is the same as taking b to be the median of Z when θ = 1. This is easily computed to be
b = 21/n . The best invariant rule is d(z) = z/21/n .

(c) Minimizing E1|(Z/b) − 1| = E1Z|(1/b) − (1/Z)| =
∫ ∞
1

|(1/b) − (1/z)|zf(z|1) dz is equivalent to
minimizing E|(1/b) − (1/Z)| where Z has density proportional to zf(z|1), which is the original density of
Z with n replaced by n − 1. This is done by choosing 1/b to be the median of the distribution of 1/Z
with this density, or equivalently, choosing b as the median of the distribution of Z with this density. This
median is 21/(n−1) so the best invariant estimate is d(z) = z/21/(n−1) .

4.6.5. Z = max{X1, . . . , Xn} is sufficient for θ and has density f(z|θ) = nzn−1/θn for 0 ≤ z ≤ θ . The
problems are scale invariant and invariant rules are of the form d(z) = z/b for some b > 0.

(a) E1((Z/b) − 1)2 is minimized for b = E1Z
2/E1Z = (n + 1)/(n + 2). So the best invariant rule is

d(z) = (n + 2)z/(n+ 1).
(b) We must find b to minimize E1L(1, Z/b) = 1 − P1{(1/c) ≤ (Z/b) ≤ c} = (b/c)n + 1 − (bc)n for

b < 1/c and= (b/c)n for b ≥ 1/c . The minimum clearly occurs at b = 1/c , so d(z) = cz is the best invariant
rule.

(c) As in problem 4.6.4(c), the optimal b is the median of the distribution with density proportional to
zf(z|1). This gives b = 2−1/(n+1) and d(z) = 21/(n+1)z as the best invariant estimate.



4.6.6. Sufficiency reduces the problem to considering T 2 =
∑n

1 X
2
i . Since the distribution of T 2/σ2 is

χ2
n , independent of σ2 , the problem is scale invariant under the loss L(σ, a) = (σ − a)2/σ2 , and invariant

rules are of the form d(T ) = T/b . As in problem 4.6.4(a), the best invariant rule is d(T ) = T/b0 , where
b0 = E1T

2/E1T . We have E1T
2 = n and

E1T =
∫ ∞

0

z1/2 1
Γ(n/2)2n/2

e−z/2z(n/2)−1 dz =
Γ((n + 1)/2)

√
2

Γ(n/2)
.

So b0 = nΓ(n/2)/(
√

2Γ((n+ 1)/2)). For estimating σ2 with loss (a/σ2 − 1)2 , the best invariant estimate is
T 2/(n+2). For estimating σ2 with loss (loga−log σ2)2 , the best invariant estimate is T 2/(2 exp[Ψ(n/2)]) ∼
T 2/(n− 1). The estimate of σ2 corresponding to the above is 2T 2Γ((n+ 1)/2)2/(nΓ(n/2))2 ∼ T 2/(n+ .5).

4.6.7. (a) The sufficient statistics are independent, with X having a normal distribution, N (µ, σ2/n)
and ns2/σ2 having a χ2

n−1 distribution. If (U, V ) = gb,c(X, s) = (bX + c, bs), then U and V are still
independent with U having the distribution N (bµ + c, b2σ2) and nV 2/(b2σ2) having a χ2

n−1 distribution.
Thus the distributions are invariant with ḡb,c(µ, σ) = (bµ+ c, bσ). Moreover, for the given loss function,

L(ḡb,c(µ, σ), g̃b,ca) =
(v(bµ + c) + wbσ − g̃b,ca)2

b2σ2
=

(vµ + wσ − a)2

σ2

provided g̃b,ca = ba+ vc , proving the loss and hence the problem is invariant.
(b) A nonrandomized invariant rule satisfies d(bX+c, bs) = bd(X, s)+vs for all X, s, b, c . Set X = 0 and

s = 1 and find d(c, b) = bd(0, 1)+v for all b, c , so that nonrandomized rules have the form dk(X, s) = vX+ks
for some constant k .

(c) There is just one orbit in Θ, so nonrandomized rules have constant risk

R((µ, σ), dk) = E(0,1)L((0, 1), vX+ ks) = E(0, 1)(w − vX− ks)2

= w2 − 2wvE(0,1)X + v2E(0,1)X
2 − 2wkE(0,1)s + 2vkE(0,1)Xs + k2E(0,1)s

2

= w2 + v2/n− 2wkE(0,1)s + k2(n− 1)/n

This is quadratic in k with a minimum at k = nwE(0,1)s/(n − 1), and the minimum risk is v2/n+ w2(1 −
n(E(0,1)s)2/(n− 1)). It is easy to compute that E(0,1)s =

√
2Γ(n/2)/Γ((n− 1)/2).

4.6.9 (a) If gc(x) = x + c , then the distributions are invariant with ḡc(θ) = θ + c . If a = (y, z) with
y < z , then the loss satisfies L(ḡc(θ), g̃c(y, z)) = L(θ, (y, z)) provided g̃c(y, z) = (y + c, z + c). This shows
the problem is invariant under location changes.

(b) Write a decision rule d as d(x) = (d1(x), d2(x)), with d1(x) ≤ d2(x) for all x . Then d is invariant if
(d1(x+c), d2(x+c)) = (d1(x), d2(x))+c for all x1, x2, c . Setting x = 0 gives (d1(c), d2(c)) = (d1(0), d2(0))+c ,
and then replacing c by x shows that all nonrandomized rules have the form (d1(x), d2(x)) = (x−b1, x−b2)
for some b1 ≥ b2 .

(c) By Theorem 4.2.1, all invariant rules have have constant risk, and by the argument of Lemma
4.5.1, we may restrict attention to the nonrandomized invariant rules. The risk of an invariant rule is
E0L(0, (X − b1, X − b2)) = k(b1 − b2) − P0(X − b1 < 0 < X − b2) = k(b1 − b2) − P0(b2 < X < b1). The
derivative of this with respect to b1 is k − (2π)−1/2 exp{−b21/2} . This is always positive if k > 1/

√
2π and

the best invariant rule in this case is to take b1 = b2 , i.e. an empty interval. If k < 1/
√

2π , then the
derivative is zero at b1 = ±(− log 2πk2)1/2 , with the plus sign producing the minimum risk. A symmetric
analysis for b2 leads to the following best invariant rule.

(d1(x), d2(x)) =
{

(0, 0) if k > 1/
√

2π
(x− b, x+ b) if k ≤ 1/

√
2π

where b = (log(1/2πk2))1/2 .

4.6.10. (a) The problem is invariant under change of location and scale as in Exercise 4.6.7 with
gb,c(X, s) = (bX+ c, bs) and ḡb,c(µ, σ) = (bµ + c, σ), but here g̃b,c(y, z) = (by + c, bz + c).

2



(b) A rule d(X, s) = (d1(X, s), d2(X, s)) is invariant if di(bX + c, bs) = bdi(X, s) + c for i = 1, 2. Put
X = 0 and s = 1 to find di(c, b) = bdi(1, 0) + c for i = 1, 2. Thus we find that invariant rules are of the
form d(a1,a2)(X, s) = (X− a1s,X− a2s) for some a1 ≥ a2 .

(c) The risk function is the constant R((0, 1), d(a1,a2)) = k(a1 − a2)E(0,1)s − P(0,1)(X − a1s < 0 <

X−a2s) = k(a1 −a2)E(0,1)s−P(0,1)(
√
n − 1 a2 < t <

√
n− 1a1), where t =

√
n − 1X/s has a t-distribution

with n−1 degrees of freedom. The derivative with respect to a1 is kE(0,1)s−fn−1(
√
n− 1a1)

√
n− 1, where

fn−1 is the density of the tn−1 -distribution. E(0,1)s is found in Exercise 4.6.7, and the density of tn−1 in
Section 3.1. This leads to

∂R((0, 1), d(a1,a2))
∂a1

=
k
√

2Γ(n/2)
Γ((n − 1)/2)

− Γ(n/2)
√
n− 1√

(n− 1)πΓ((n− 1)/2)(a2
1 + 1)n/2

If 2πk2 > 1, the risk is minimized by choosing a1 = a2 i.e. the interval estimate is the empty set. If
2πk2 ≤ 1, the optimal value of a1 can be found by setting the above derivative to zero and solving for
a1 . The corresponding point for a2 is symmetric, and we find that the best invariant interval estimate is
(X− as,X+ as), where (unlike the formula in the book) a = ((2πk2)−1/n − 1)1/2 .

4.6.11. (a) The distributions are invariant under the transformations gb,c(x1, x2) = (bx1 + c, bx2 + c)
with ḡb,c(µ, σ) = (bµ+ c, bσ). The loss is invariant with g̃b,ca = ba+ vc .

(b) A nonrandomized rule d is invariant if d(bx1 + c, bx2 + c) = bd(x1, x2) + vc for all x1, x2, b > 0 and
c . Putting x1 = 0 and x2 = 1, we find d(c, b+ c) = bd(0, 1) + vc for all b > 0 and c . Replacing c by x1

and b by x2 − x1 , we find that every nonrandomized rule is of the form dα(x1, x2) = α(x2 − x1) + vx1 for
some number α .

(c) The best invariant rule then is dα where α minimizes E(0,1)(W (w − vX1 − α(X2 −X1))2 .
(d) If W (z) = z2 , then the α that minimizes the expectation in (c) is

α0 =
E(0,1)((w − vX1)(X2 −X1))

E(0,1)(X2 −X1)2
.

The best invariant rule is dα0 .

4.6.12. The joint distribution of X1 and X2 is

fX1,X2 (x1, x2|µ, σ) = n(n − 1)
1
σ2

[
1
σ

(x2 − x1)]n−2 for µ < x1 < x2 < µ + σ.

Thus, this density has the form required in Problem 4.6.11. We calculate the three expectations,

E(0,1)(X2 −X1) =
∫ 1

0

∫ x2

0

n(n− 1)(x2 − x1)n−1 dx1 dx2 =
n − 1
n + 1

.

E(0,1)(X2 −X1)2 =
∫ 1

0

∫ x2

0

n(n− 1)(x2 − x1)n dx1 dx2 =
n(n− 1)

(n+ 1)(n+ 2)
.

E(0,1)(X2 −X1)(x1X2 − x2X1) = x1E(0,1)[X2(X2 −X1)] − x2E(0,1)[X1(X2 −X1)]

= x1
n− 1
n+ 2

− x2
n− 1

(n+ 1)(n+ 2)
=

n − 1
(n+ 1)(n+ 2)

[(n+ 1)x1 − x2].

Therefore, by Problem 11(d), the best invariant decision rule is

d(x1, x2) = w
n+ 2
n

(x2 − x1) + v[x1 −
1
n

(x2 − x1)].
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