Solutions to the Exercises of Section 4.3.

4.3.1. The parameter space is © = {(6,7):0< 0 <1,5=1,...,n}, the action space is A = [0, 1], and
the loss function is L((6, j),a) = (# —a)?. Under (6, j), the observations, Xi, ..., X,, are independent, X;
is B(1,0) and X; is B(1,1/2) for i # j.

The problem is invariant under the permutations of the observations, gr(x1,...,%n) = (Tx(1), - - -, Ta(n))
for permutations © of (1,...,n), with g.(0,5) = (6,77 1(j)) and §.(a) = a. It is also invariant under
the map go(x1,...,2n) = (1 —x1,...,1 — x,) with g2(0,7) = (1 — 6,5) and g2(a) = 1 — a. We may
restrict attention to nonrandomized invariant rules. A rule d is invariant under g, if d(g-(x1,...,2,)) =

grd(x1,...,x,) =d(x1,...,2,). This means that d depends on the x; only through the sum S = Xy +---+
X,,. We henceforth write invariant rules as d(s). Such a rule is invariant under go if d(s) =1 —d(n — s).
In particular, if n is even then d(n/2) =1/2.

The distribution of S under (6, j) is independent of j and has mass function,

(%)n—l(l —0) for s =0
Py(S=s) = (2:11)(%)"_194—(";1)(%)"_1(1—9) fors=1,...,n—1
(1)to for s =n.

Note that Py(S = s) is linear in #. The risk function of an invariant rule is R((6, 5),d) = Eg(8 — d(S))? =
02 — 20Eyd(S) +E¢d(S)?. Now note that Egd(S) and Eyd(S)? are linear in #. This implies that R((6, ), d)
is quadratic in . And since d is invariant under go, R((0,j),d) is symmetric in § about 1/2. Therefore
the maximum of R((6,7),d) over 6 occurs at § =1/2 orat § =0 and 0 = 1.

Below, we show that do(s) = s/n minimizes R((0,5),d) = R((1,j),d) and then we show that this mini-
mum value is greater than R((1/2,7),do). First note that R((0, j),d) = (1/2)R((0,4),d)+ (1/2)R((1,7),d):
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We wish to find d to minimize this subject to the restriction that d be invariant, i.e. d(s) =1—d(n—s) for
s =0,...,n. The overall minimum without regard to the restriction is easily found by setting the derivatives
of R((0,7),d) with respect to the d(s) separately to zero. We find d(s) = s/n. This satisfies the restriction
and so gives the minimum value subject to the restriction.

To show that R((0,j),do) = Eo(S/n)? is greater than R((1/2, j),do) = E1/2(S/n — 1/2)?, we evaluate
both. When # = 1/2, S has a binomial distribution sample size n and probability of success 1/2, so
R((1/2,7),do) = Var; j2(S/n) = 1/(4n). When 6 =0, S has a binomial distirbution sample size n — 1 and
success probability 1/2, so

n—-1 (nm-1)?% n-1

R((0,7), do) = Varo(S/n) + (Eo(S/n))* = —5 + ~5— = =~

This is greater than 1/4n for all n > 1.

4.3.2. From Lemma 2.11.1, the least favorable distribution must give all its weight to points p for which
R(p,1/4) = v =1/4. As in Figure 4.1, this occurs only at the three points 0, 1/2 and 1. From Theorem
3(c), we may restrict attention to invariant prior distributions, those that distribute weight symmetrically
about 1/2. Thus a least favorable distribution 7 must be of the form 7(0) = 7(1) = z and 7(1/2) =1 — 2z
for some 0 < z < 1/2. The Bayes risk of such a prior is

r(r,x) = z[R(0,2) + R(1,z)] + (1 — 22)R(1/2,2) = 22z + (1 — 2z)|1 — 2z]|.

Since this is increasing in z for > 1/2 we may assume x < 1/2, and write r(7,z) = 222+ (1—-22)(1-2x) =
(1/2) — z+ x(1 —42). If z =1/4, this is constant in x with value 1/4. Since 1/4 is the minimax value, 7
is least favorable.

4.3.3. From Theorem 3, we may search among the invariant priors for a least favorable 7y. If a prior
is invariant under g, then for all # it must assign equal weight to (8,1) and (6,2). If it is invariant under



g2, then for ¢ = 1,2 and all § it must assign equal weight to (#,7) and (1 — 6,7). However, the risk of a
nonrandomized invariant rule, z, was found to be R((6,1),2) = 220? —220+2%/2+1/8 and to be maximized
at 6 =0 and 6 = 1. Therefore the invariant prior, 79, that gives mass 1/4 to each of (0,1), (0,2), (1,1),
and (1,2), is least favorable: Its Bayes risk is the average of R((6,14),z) over these four points and so is
r(70, 2) = 22/2 + 1/8, whose minimum over z is 1/8, the minimax value.

4.3.4. From Exercise 4.2.7(b), we know that a behavioral invariant rule chooses an action at random
independent of the observations. For any such distribution, ¢, we may find, for a given € > 0, a number A
such that ¢ assigns 1 — e of its mass to the interval (0, A/2). Then, R((A,X),d) > 1 — €. This shows that
sup, R(0,8) = 1. Yet, if d(X,Y) = (Y1/X1)? (note the correction of the text), then

R(O,d) =1—-Pas{|A—(V1/X1)?| <A/2} =1-Pys{|1 - (V1/X1)? < 1/2}.

This is independent of X, and so is a constant less than one.

4.3.5. (a) If X is B(n,0) (the binomial distribution), then n—X is B(n,1—6), so gd = 1—6. Moreover,
if ga=1—a, then L(,a) = (1—(1—0))(1—a)+(1—0)(1—(1—a)) = L(6,a). So the problem is invariant.

(b) A nonrandomized decision rule d is invariant if d(g(z)) = gd(z), that is, if d(n—z) = 1 —d(z) for all
x=0,1,...,n. Soif d(z) is specified for x < n/2, then it is determined for z > n/2 by d(n—z) = 1—d(x),
which implies, if n is even, that d(n/2) =1/2).

(c) We may compute the risk function for an invariant rule d, using d(n — z) = d(z) to reduce the
dependence of the risk to d(z) for z < n/2 as follows.

R(0,d) = f: (Z) (1 — 9)"[(1 — 0)d(z) + 6(1 — d(z))]
x=0
=
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n—=x
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z<n/2

The coefficients of d(z) are (1 —260)[1— (/(1 —6)"=2%] >0 for all § € [0,1] when z < n/2. Therefore, the
risk is minimized by choosing d(z) = 0 for < n/2, and hence d(z) = 1 for = > n/2 (and, if n is even,
d(n/2) = 1/2. This is the best invariant rule.

By Exercise 2.11.15, the rule d(x) = 1/2 is minimax. Since this rule is invariant, the best invariant rule
is also minimax. But the best invariant rule has much smaller risk function.

4.3.6. Let 79 be invariant (gro = 70 for all ¢ € G) and let & be Bayes with respect to 79 (7(79,9) <
r(79,0") for all §’). Define

1
bo =70

geg

where N is the number of elements in G. Then Jy is invariant (in fact, it is the same as 67 in the proof of
Theorem 1). We will show that &y is also Bayes with respect to 7.

1
r(70,00) = + > (70, 69)
geg
1
= Zr(gm, J) as in Theorem 3(a)
geg
1
= Z (70, 9) since dy invariant
geg
= r(70,9).



Thus §p has the same Bayes risk as d as so is also Bayes with respect to 7q.

4.3.7. Let 7 be least favorable (infsr(r,d) > infsr(7’,d) for all 7/). Define 7o = (1/N) 3, g7 as in
the proof of Theorem 3(a). Then
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Thus, 7y is also least favorable.



