
Solutions to the Exercises of Section 4.2.

4.2.1. Reflexivity : The identity transformation, ē(θ), is in Ḡ and ē(θ) = θ .
Symmetry : If θ1 ≡ θ2 , there exists a ḡ ∈ Ḡ such that ḡ(θ1) = θ2 . But then ḡ−1 ∈ Ḡ and ḡ−1(θ2) = θ1 .
Transitivity : If θ1 ≡ θ2 and θ2 ≡ θ3 , then there exist ḡ1 ∈ Ḡ and ḡ2 ∈ Ḡ such that ḡ1(θ1) = θ2 and

ḡ2(θ2) = θ3 . But then ḡ = ḡ2ḡ1 ∈ Ḡ and ḡ(θ1) = ḡ2(ḡ1(θ1)) = ḡ2(θ2) = θ3 .

4.2.2. Example 4.1.1: gc(x) = x + c and g̃c(a) = a + c , so d is invariant if d(gc(x)) = g̃c(d(x)) or
equivalently, d(x+ c) = d(x) + c for all real x and all real c . Replacing x by 0, we find d(c) = d(0) + c for
all c . Let b denote d(0) and replace c by x . Then d(x) = x+ b .

Example 4.1.2: g(x) = n − x and g̃(a) = 1 − a , so that d is invariant if d(n − x) = 1 − d(x) for all
x = 0, 1, . . . , n .

Example 4.1.3: gb,c(x) = bx + c1 and g̃b,c(a) = ba+ c , so d is invariant if d(bx + c1) = bd(x) + c for
all x , b �= 0 and c .

Example 4.1.4: gb(x) = bx and g̃b(a) = a , so that d is invariant if d(bx) = d(x) for all x and b > 0.
A behavioral rule δ is invariant if δx(A) = δgb(x)(g̃b(A)) or equivalently δx(A) = δbx(A) for all x , b > 0
and A . Thus a behavioral rule is invariant if the probability it assigns to sets A ∈ A depends on x only
through x/‖x‖ .

4.2.3. If Y1, . . . , Yn are the order statistics of a sample of size n from a distribution function F , if
φ(x) is a continuous increasing function of the real line onto itself and if Zi = φ(Yi) for i = 1, . . . , n , then
Z1, . . . , Zn are the order statistics of a sample of size n from the distribution function G(z) = F (φ−1(z)).
Thus the distributions are invariant under the group G of transformations of the form gφ(y1, . . . , yn) =
(φ(y1), . . . , φ(yn)), with ḡφ(F (x)) = F (φ−1(x)). If L(F, a) = W (F (a)), then the loss is invariant with
g̃φ(a) = φ(a), because L(ḡφ(F ), g̃φ(a)) = W (ḡφ(F (g̃φ(a)))) = W (F (φ−1(φ(a))) = W (F (a)) = L(F, a). A
nonrandomized rule d is invariant if

d(gφ(y)) = g̃φ(d(y)) or d(φ(y1), . . . , φ(yn)) = φ(d(y1, . . . , yn)) for all φ. (∗)

If φ leaves y1, . . . , yn fixed, that is for φ in Φy = {φ : φ(yi) = yi, for i = 1, . . . , n} , this gives d(y1, . . . , yn) =
φ(d(y1, . . . , yn)) which implies that d(y1, . . . , yn) is one of the yj , but which j may depend on y . Sup-
pose d(y′) = y′j for some fixed y′ and j . Then, for all φ that leave y′j fixed, Equation (*) implies
that d(y1, . . . , yj−1, y

′
j, yj+1, . . . , yn) = y′j for all y1, . . . , yj−1, yj+1, . . . , yn . Now, for those φ that leave

y1, . . . , yj−1, yj+1, . . . , yn fixed, (*) implies that d(y) = yj for all y . Thus there are only n different non-
randomized rules.

The risk function of dj(Y) = Yj , is R(F, dj) = EW (F (Yj)) = EW (Uj), where Uj is the j th order
statistic of a sample of size n from a uniform distribution. This is independent of F .

4.2.4. We have gO(x) = Ox for all x and all orthogonal matrices, O , and g̃O(a) = a for all a . A
nonrandomized rule, d , is invariant if d(Ox) = d(x) for all orthogonal O and x . If |x| = |y| , then there is
an orthogonal O such that Ox = y , so that d depends on x only through its length, |x| . Since ḡO(θ) = Oθ ,
the orbits of Θ are the spheres. The risk function is constant on these orbits and so R(θ, d) depends on θ
only through |θ| .

4.2.5. We have gO(X) = OX , and g̃O(a) = a . An invariant nonrandomized decision rule, d , satisfies
d(OXO) = d(X) for all vectors X and all diagonal matrices O of determinant ±1. If we let bi denote the
ith diagonal element of O , then an invariant nonrandomized decision rule satisfies

d(x1, . . . , xn) = d(b1x1, . . . , bnxn)

for all real x1, . . . , xn and all real b1, . . . , bn such that
∏n

1 bi = ±1. If all xi �= 0, then we may take bi = 1/xi

for i = 1, . . . , n− 1 and bn = sgn(xn)
∏n−1

1 |xi| to find

d(x1, . . . , xn−1, xn) = d(1, . . . , 1, |
∏n

1xi|)

for all non-zero x1, . . . , xn , and conversely, any function of |
∏n

1 xi| is invariant. However, since in the
statement of the problem, Σ is allowed to be singular, the Xi may assume the value zero with positive



probability. If some of the xi are zero, then the same argument shows that d must be constant, but the
constant may depend on which of the xi are zero. The fact that the risk function of an invariant rule is
constant on orbits in the parameter space implies that the risk function of an invariant rule depends only on
det(Σ), provided det(Σ) �= 0. When det(Σ) = 0, the risk of an invariant rule may depend on which entries
along the diagonal of Σ are zero but not on the non-zero components.

Thus we see that the statement of the solution to the problem is wrong. If the parameter space were
restricted to those Σ > 0, then the risk function of an invariant rule would depend only on det(Σ). We
may try to get this result using invariance under a larger group. In addition to invariance under the
transformations gO , the problem is also invariant under the group of permutations of the subscripts of
X1, . . . , Xn . However, an invariant rule d may depend on the number of xi = 0, and the risk function of an
invariant rule may still depend on the number of diagonal elements of Σ that are zero.

4.2.6. If Y = g(X) = −X , then Pθ(Y = 0) = Pθ(Y = −θ) = 1/2, or, equivalently, P−θ(Y = 0) =
P−θ(Y = θ) = 1/2 for all θ . This shows that ḡ(θ) = −θ . Similarly, since L(θ, a) = L(−θ,−a) for all a and
θ , we have g̃(a) = −a . So Ḡ = {ē, ḡ} and G̃ = {ẽ, g̃} .

We may restrict attention to rules that take action a = x with probability 1 when x �= 0. In addition,
we may restrict attention to rules that give no weight to action a = 0 when x = 0. In other words, the
following class of rules, indexed by π ∈ [0, 1] , forms a complete class of decision rules:

δπ(x) =




1 w.p. 1 if x = 1
−1 w.p. 1 if x = −1{

1 w.p. π
−1 w.p. 1 − π if x = 0.

The risk function of δπ is

R(θ, δπ) =
{

(1/2)(1 − π) if θ = 1
(1/2)π if θ = −1.

We find supθ R(θ, δπ) = (1/2) max(π, 1 − π). The minimax rule is δπ for π that minimizes this supremum,
namely π = 1/2. This gives the behavioral invariant rule stated in the problem. It has value 1/4.

A nonrandomized rule d(x) is invariant if d(g(x)) = g̃(d(x)), that is, if d(−x) = −d(x) for all x . We
have immediately that d(0) = 0 for all invariant nonrandomized rules. So we see that there are exactly
three such rules depending on the three possible values of d(1), namely, d1(x) = x , d2(x) = −x and
d3(x) ≡ 0. There have constant risks 1/2, 1/2 and 1 respectively. The best we can do mixing these (i.e.
with randomized invariant rules) is 1/2.

4.2.7. (a) If X and Y are independent N (0,Σ) and N (0,∆Σ) respectively, then BX and BY are
independent N (0,BΣBT ) and N (0,∆BΣBT ) respectively, so that ḡB(∆,Σ) = (∆,BΣBT ). The loss is
invariant if we take g̃B(a) = a .

(b) A (behavioral) rule, δ , is invariant if for all X , Y and B the distribution δ(X,Y) on A is the same
as the distribution δ(BX,BY). But but for any two pairs, (X,Y) and (X′,Y′), of linearly independent
vectors, there exists a nonsingular matrix B such that X = BX′ and Y = BY′ . Thus, for an invariant δ ,
the distribution δ(X,Y) must be independent of X and Y .

(c) If A = (0,∞) and L(∆, a) = W (a/∆), then the problem is invariant under the group of transfor-
mations gB,c(X,Y) = (BX, cBY), with ḡB,c(∆,Σ) = (c∆,BΣBT ) and g̃B,c(a) = ca . As in part (b), for
an invariant rule δ , the distribution δ(X,Y) is independent of X and Y . Here we have in addition that
the distribution must be independent of scale change. This is true on;y of the distribution degenerate at
zero. But zero is not in A so there are no invariant rules.

4.2.8. (a) Since the pair (X, Y ) are independent P(θ1),P(θ2), then g(X, Y ) = (Y,X) are independent
P(θ2),P(θ1), so ḡ(θ1 , θ2) = (θ2, θ1). With g̃a = 1 − a , we have L(ḡ(θ1 , θ2), g̃a) = L((θ2 , θ1), 1 − a) =
L((θ1 , θ2), a).

(b) A nonrandomized rule satisfies d(x, y) = 1 − d(y, x). But for x = y , which occurs with positive
probability, we have d(x, x) = 1 − d(x, x) which implies d(x, x) = 1/2 which is not in the action space, A .
Thus, no nonrandomized rules exist.
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(c) Let pxy denote the probability of taking action 0 if X = x, Y = y is observed. This rule is invariant
if and only if pxy = 1 − pyx . So all invariant rules can be specified by specifying pxy for x < y , and then
letting pxy = 1 − pyx for x > y and letting pxx = 1/2.

(d) The risk function of an invariant rule δ satisfies R((θ, θ), δ) = 0, and R((θ1, θ2), δ) = R((θ2, θ1), δ).
So assume θ1 < θ2 . Then,

R((θ1, θ2), δ) =
∑
x,y

pxy
e−θ1θx1
x!

e−θ1θx1
x!

= e−θ1−θ2

[∑
x

pxx
θx1
x!
θx2
x!

+
∑
x<y

pxy
θx1
x!
θy2
y!

+
∑
x>y

(1 − pyx)
θx1
x!
θy2
y!

]

= e−θ1−θ2

[
1
2

∑
x

θx1
x!
θx2
x!

+
∑
x<y

pxy
θx1
x!
θy2
y!

+
∑
x>y

θx1
x!
θy2
y!

−
∑
y>x

pxy
θy1
y!
θx2
x!

]

= (something independent of pxy) + e−θ1−θ2
∑
x<y

pxy
1
x!y!

(θx1 θ
y
2 − θy1θx2 ).

When θ1 < θ2 and x < y , we have θx1 θ
y
2 > θ

y
1θ

x
2 . So R((θ1 , θ2), δ) is minimized by choosing pxy = 0 for

x < y , and hence pxy = 1 for x > y and pxx = 1/2.
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