
Solutions to the Exercises of Section 3.7.

3.7.1. The spelling of Dvoretzky should be corrected (twice). The density of X is

fX(x|θ) =
{

fY (x|θ) if |x| < 1
fY (x|θ) + fY (−x|θ) if x > 1 =

1√
2π

e−(x2+θ2)/2

{
eθx if |x| < 1
eθx + e−θx if x > 1.

This is not an exponential family so the words “the distribution of X forms an exponential family; hence”
should be deleted from the statement of this exercise. For an arbitrary decision rule δ(x) = P(a1|X = x),
the Bayes risk with respect to the uniform distribution τ is

r(τ, δ) =
1
2

∫ −1

−2

(1− Eθδ(X)) dθ +
1
2

∫ 2

1

Eθδ(X) dθ

=
1
2
+

1
2

[∫ 2

1

Eθδ(X) dθ −
∫ −1

−2

Eθδ(X) dθ

]

=
1
2
+

1
2

∫ ∞

−1

δ(x)
[∫ 2

1

fX(x|θ) dθ −
∫ −1

−2

fX(x|θ) dθ

]
dx

Any Bayes rule, δ0(x), must have value 1 if the term in the square brackets is negative and 0 if it is positive.
It is immaterial what value δ0(x) assumes if the term in square brackets is zero. From this we may conclude
that the rule

δ0(x) =

{ 1 if −1 < x < 0
1/2 if x > 1
0 if 0 < x < 1

is a Bayes rule with respect to τ . (This corrects the misprint in writing δ0
x(a1) in the text.) Since the

distribution of Y forms an exponential family, we have that the risk function of any rule δ(x) is continuous
in θ since δ(x) may also be considered as a function of y . The admissibility of δ0 now follows from the
proof of Theorem 2.3.3 (but not quite from the statement, where it was assumed that the parameter space
was the whole real line).

We now note that X is a complete sufficient statistic for the distribution of X given θ : If Eθg(X) = 0
for all θ , then Eθg(h(Y )) = 0 for all θ , where h is the function that maps Y into X . But since Y has an
exponential family of distributions, Y is a complete sufficient statistic for θ , so that Pθ(g(h(Y )) = 0) = 1.
Thus we have Pθ(g(X) = 0) = 1, completing the proof.

From this, we may conclude that if δ is any rule that is as good as δ0 , then δ has the same risk function
as δ0 since the latter is admissible. But then from completeness, Eθδ(X) − Eθδ0(X) = 0 for all θ implies
that δ(X) − δ0(X) = 0 with probability one. Thus δ must be randomized, and no nonrandomized rule can
be as good as δ0 .

3.7.2. The method used for the proof with squared error loss works with minor changes for absolute
error loss. Again, we may take n = 1 and T ∈ N (θ, 1) without loss of generality. Since absolute error
loss, L(θ, a) = |θ − a| , is convex in a for every θ , we may restrict attention to nonrandomized decision
rules, d . Theorem 3.7.2 implies that R(θ, d) is continuous in θ ; condition (a) is satisfied with B1 = 1 and
B2(θ1, θ2) = |θ1 − θ2| .

Suppose d′(t) = t is not admissible. Then there exists a rule d′′(t) such that R(θ, d′′) ≤ R(θ, d′) for all
θ and R(θ0 , d

′′) < R(θ0, d
′) for some θ0 . Since R(θ, d′) and R(θ, d′′) are continuous in θ , there exists an

ε > 0 such that R(θ, d′′) < R(θ, d′) − ε for all θ such that |θ − θ0| < ε .
If the prior distribution is τσ = N (0, σ2), then the posterior distribution is N (tσ2/(1+σ2), σ2/(1+σ2)).

The Bayes rule is the median of this distribution, namely dσ(t) = tσ2/(1 + σ2), and the Bayes risk is
r(τσ , dσ) = c

√
σ2/(1 + σ2), where c =

√
2/π . Thus,

r(τσ, d′)− r(τσ, dσ) = c

(
1−

√
σ2

1 + σ2

)
.



However,

σ[r(τσ, d′′) − r(τσ , d′)] < − ε

2π

∫ θ0+ε

θ0−ε

exp{− θ2

2σ2
} dθ

so that

0 ≤ − ε√
2π

∫ θ0+ε

θ0−ε

exp{− θ2

2σ2
} dθ + cσ

(
1−

√
σ2

1 + σ2

)
.

The second term still converges to zero as σ2 → ∞ while the first term converges to −2ε2/
√
2π < 0, yielding

a contradiction that completes the proof.
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