Solutions to the Exercises of Section 3.4.

3.4.1. We are to show E(median(X;)|T) = X when Xi,..., X, is a sample from N(#,1) and T =

X1+ -+ X,. Since X is a one-to-one function of T, E(median(X;)|T) = E(meﬁiian(Xi)p_()._ Note
that median(X; — X) = median(X;) — X a.s. But X and the differences, (X1 — X,..., X, — X), are
stochastically independent, so E(median(X;)|X) = X + E(median(X; — X)|X) = X + E(median(X; — X)).

But E(median(X; — X)) = Eg(median(X;)) — Eg(X) =0 — 6 = 0. Hence, E(median(X;)|T) = X.

3.4.2. If Xy,...,X, is a sample from the uniform distribution, U(«, §), then T = (min X;, max X,) is
a sufficient statistic for (o, 3) (see bottom of page 118). Hence, since the loss function, ((a + 3)/2 — a)?,
is a convex function of a for all («, 3), the decision rule dy = E(X,|T) is as good as X,,. Using Exercise
3.4.6, since the distribution of X,, given T =t is nondegenerate for almost all ¢ when n > 3, and the loss
is strictly convex, dy is an improvement over X,, when n > 3. When n = 2, dy = X,, so it is not an
improvement in this case.

To find dj, we use the following symmetry argument. The conditional distribution of the order statistics,
Xy, -+ X(n), given T, that is given X(;) and X(,), has X(9),..., X(,—1) as the order statistics of a
sample of size n — 2 from the uniform distribution on the interval (X(y, X(,)). Thus the conditional
distribution of X, given T is symmetric about the midpoint of the interval, namely, about the midrange,
M = (min X; + max X;)/2. Hence, dy = E(X,,|T) = M.

3.4.3. (The conclusion should have read ..., then the maximum likelihood estimate can be taken to be
a function of T'.” Note that if the parameter space consists of two points, © = {1/3,2/3}, and if X; and
X, are independent Bernoulli, B(1,6), then 6(X;, X5) = (X1 +1)/3 is a maximum likelihood estimate of 6
that is not a function of the sufficient statistic X; + X5. This occurs because the maximum of f(z1, 22|6)
over 6 is not achieved at a unique value of 8 when z; +x2 = 1. But we can still find a maximum likelihood
estimate that is a function of T'.)

If T =t(X) is sufficient for § and the factorization theorem holds, then fx(x|6) = g(¢t(x),0)h(z). If
for a given z there is a value of 6 that achieves the maximum in f(z|f), then the same value of 6 achieves
the maximum in g¢(¢,0) where ¢ = ¢(x). Then if the maximum likelihood estimate exists, we can choose for
cach ¢ in the range of t(x) a value A(t) that maximizes g(¢,6). The the estimate A(¢(z)) is a maximum
likelihood estimate of 6.

3.4.4. (a) Let f; = n;p;(1 — p;). Then, setting the derivatives of logit x? with respect to a and 3 to

7€ero gives
aY fi+BY wifi = filogitp;
aijfj + Bzxifj = Zﬂ?jfjlogitﬁj

The determinant, (3 f;)(>23f;) — (X x;f;)?, is nonnegative by Schwarz inequality. We may assume
without loss of generality that the x; are distinct (since the Y; corresponding to equal ; could be combined).
Then the determinant is zero if and only if at most one f; is positive. In this case, the minimum logit x>
estimates are not uniquely determined.
(b) For N=3,n =ng=n3g =10, x1 = —1, 20 =0, 23 =1,and Y1 =0, Yo =4, Y3 =9, the
equations become,
33+ 93 = 2410g(2/3) + 91og(9)
9a 4 95 = 91og(9)

Hence, the minimum logit x? estimates are

a(y) =log2 —log3 = —.405- - -

B(y) = —log2+3log3 = 2.603- - -.

To find the Rao-Blackwellized version, we need the conditional distribution of Y7, Y5, Y3 given Y1 +Yo+Y5 =
13 and Y3—Y7 = 9. The only vectors (y1, y2,ys) of integers y; with 0 < y; < 10, such that y1 +y2+ys3 = 13
and y3 —y; = 9 are

y=1(0,4,9) and y' =(1,2,10).



When Y =y, the minimum logit y? estimates are found as above. When Y = y’, the minimum logit x>

estimates are
aly’) = —2log2=—1.386---

B(y') = 2(log3 —log2) = .811---.
We compute
(0) () ()
(0) (D) (5) + (D) (2) Qo)
from which we have P(Y = y/[Y =y or Y =y') =1-.824-.- = .176---. The Rao-Blackwellized
estimates are therefore

P(Y:y|Y:y or Y:y/): = 824 ...

a*(13,9) = E{a(Y)|T = (13,9)} = .8244(y) + .176G(y’) = —.579 - -

and
B*(13,9) = B{B(Y)|T = (13,9)} = .82453(y) + .1763(y’) = 2.286 - - -.

3.4.5. (Again as in Exercise 3, the conclusion should state that there exists a nonrandomized Bayes rule
that is a function of T'.)

If T =¢(X) is sufficient for 6 and the factorization theorem holds, then fx (x|0) = g(t(x), 0)h(z). For
a prior 7, the Bayes rule minimizes the conditional Bayes risk given X = x which is proportional to

/@ L0, d)g(t(x),0)dr ().

This depends on x only through the value of ¢(x). Hence any Bayes rule may be taken to be a function of
t(x), as in Exercise 3.

3.4.6. Suppose L(6,a) is strictly convex in a for all § € ©, and that the conditional distribution of
d(X) given T =t is nondegenerate. Then from Exercise 2.8.9 we may conclude that E(L(0,d(X)|T =t) >
L(6,E(d(X)|T = t)) = L(,0(t)), the inequality being strict. If the distribution of d(X) given T = t is
nondegenerate for a set of ¢ with positive probability under some 6, then in the proof of the Rao-Blackwell
Theorem we may conclude that R(6,d) = Eg[E(L(0, d(X)|T)] > Eo[L(6, 0(T))] = R(6,0).



