
Solutions to the Exercises of Section 3.3.

3.3.1. (a) Independent Xj ∈ B(nj , p) for j = 1, . . . , n .

fX1,...,Xn(x1, . . . , xn|p) =
n∏

j=1

(
nj

xj

)
pxj(1− p)nj−xj = h(x)p

∑
xj(1− p)

∑
nj−

∑
xj .

By the Factorization Theorem, S =
∑

Xj is sufficient for p . Since S is the total number of successes in∑
nj independent trials with probability p of success on each trial, S ∈ B(

∑
nj, p).

(b) Independent Xj ∈ NB(rj , p) for j = 1, . . . , n .

fX1,...,Xn(x1, . . . , xn|p) =
n∏

j=1

(
rj + xj − 1

xj

)
(1− p)rj pxj = h(x)(1 − p)

∑
rj p

∑
xj ,

shows that S =
∑

xj is sufficient for p . Since S represents the number of trials required to obtain∑
rj successes in a sequence of independent trials with probability p of success on each trial, we have

S ∈ NB(
∑

rj, p).
(c) Independent Xj ∈ P(λ) for j = 1, . . . , n .

fX1,...,Xn(x1, . . . , xn|λ) =
n∏

j=1

e−λλxj /xj! = h(x)e−nλλ
∑

xj .

So S =
∑

Xj is sufficient for λ . The Moment Generating Function of X ∈ P(λ) is MX(t) = exp{λ(et−1)} .
Thus, the MGF of S is MS(t) =

∏
MX−j(t) = exp{nλ(et − 1} , the MGF of P(nλ).

(d) Independent Xj ∈ G(α, β) for j = 1, . . . , n .

fX1,...,Xn(x1, . . . , xn|α, β) =
n∏

j=1

1
Γ(α)βα

e−xj/βxα−1
j = h(α, β)e

∑
xj/β(

∏
xj)α−1.

Thus, (
∑

Xj ,
∏

Xj) is sufficient for (α, β);
∑

Xj is sufficient for β if α is known; and
∏

Xj is sufficient
for α if β is known. The MGF of G(α, β) is (1 − βt)α , so the MGF of

∑
Xj is (1 − βt)nα , which is the

MGF of G(nα, β).
(e) Independent Xj ∈ Be(α, β) for j = 1, . . . , n .

fX1,...,Xn(x1, . . . , xn|α, β) =
n∏

j=1

h(α, β)xα−1
j (1− xj)β−1 = h(α, β)n(

∏
xj)α−1(

∏
(1 − xj))β−1 .

Thus, (
∏

Xj ,
∏
(1− Xj)) is sufficient for (α, β);

∏
Xj is sufficient for α if β is known; and

∏
(1− Xj) is

sufficient for β if α is known.

3.3.2. The joint probability mass function of X1, . . . , Xn is

fX1,...,Xn(x1, . . . , xn|θ, p) =
n∏

j=1

(1− p)pxj−θI(xj ∈ {θ, θ + 1, . . .})

= (1− p)np−nθp
∑

xj I(minxj ∈ {θ, θ + 1, . . .})

·
n∏

i=1

I(xi ∈ {minxj ,minxj + 1, . . .}).

This is of the form h(x)g1(
∑

xj , p)g2(minxj, θ), so by the Factorization Theorem, (minXj ,
∑

Xj) is suffi-
cient for (θ, p). Moreover, if p is known, then minXj is sufficient for θ , and if θ is known, then

∑
Xj is

sufficient for p .



3.3.3. Let X = (X1, . . . , Xn) be i.i.d from a distribution F (x|θ). Then for every permutation π of
(x1, . . . , xn), the distribution of πX is the same as the distribution of X . Let T = (X(1), . . . , X(n)) be the
vector of order statistics. Then for any measurable set A in En ,

P(X ∈ A) =
1
n!

∑
π

P(πX ∈ A) =
1
n!

∑
π

P(πT ∈ A)

where the sumation is over the set of all n! permutations. This shows that the conditional distribution
of (X1, . . . , Xn) given the order statistics, (X(1), . . . , X(n)), is uniform on the set of all permutations of
(X(1), . . . , X(n)). Since this conditional distribution does not depend on θ , it follows that T is sufficient for
θ .

In fact, the above proof works for a family of exchangeable distributions. (The distribution of a sequence,
X = (X1 , . . . , Xn) of random variables is said to be exchangeable if for every permutation π , of (x1, . . . , xn),
the distribution of πX is the same as the distribution of X .)

3.3.4. First, suppose that the parameter space is Θ = {(µ,Σ) : Σ nonsingular} . Then the joint density
of X1, . . . ,Xn exists and is of the form

f(x1, . . . ,xn|µ,Σ) = (2πdet(Σ))−n/2 exp{−U/2},

where

U =
n∑

i=1

(xi − µ)TΣ−1(xi − µ)

=
n∑

i=1

(xi − x + x − µ)TΣ−1(xi − x + x − µ)

=
n∑

i=1

(xi − x)TΣ−1(xi − x) + n(x − µ)TΣ−1(x − µ).

The last term depends on x1, . . . ,xn only through x . The factorization theorem will imply that X, S2 is
sufficient for µ,Σ when we show the first term depends on x1, . . . ,xn only through S2 . Let σhj denote the
(h, j)-element of Σ−1 . Then

n∑
i=1

(xi − x)TΣ−1(xi − x) =
n∑

i=1

∑
h

∑
j

(xih − x·h)σhj(xij − x·j)

=
∑

h

∑
j

σhj
n∑

i=1

(xih − x·h)(xij − x·j).

The inside sum is n times the (h, j)-element of S2 .

Now suppose that Σ is allowed to be singular in Θ. First note that Σ and S2 have the same null space
almost surely; more precisely, aTΣa = 0 if and only if aTS2a = 0 w.p. 1. This is because Var(aTX) = aTΣa
and this is zero if and only if aTXi = aT µ w.p. 1 for all i , so that aT S2a = (1/n)

∑n
i=1 aT (Xi − µ)(Xi −

µ)Ta = 0 w.p. 1. Hence when S2 is nonsingular, the distribution of X1, . . . ,Xn given X, S2 is the same
as in the nonsingular Σ case and does not depend on µ,Σ. If S2 is singular, say of rank r < k , then the
distribution of X1, . . . ,Xn given X, S2 is found as follows. There exists an r -dimensional subvector X∗ of
X with nonsingular subcovariance matrix S∗2 of S2 . The conditional distribution of these components of
X1, . . . ,Xn given X, S2 is the same as in the nonsingular Σ case but with dimension r . The remaining
components of the vectors X1, . . . ,Xn may be determined exactly from these and X, S2 . This distribution
is described idependently of µ,Σ.
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