Solutions to the Exercises of Section 3.1.

3.1.1. (a) The joint distribution of X and Y is a mixed discrete and continuous density,
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so the marginal distribution of X has mass function,
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for x=0,1,...,n, exactly BB(a,3,n).
(b) EX = E(E(X|Y)) = E(nY) =nEY =na/(a+03).
(c) EX? = E(E(X?]Y)) = E(Var(X|Y) + E(X|Y)?) = E(nY (1 = Y) + n?Y?), so
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VarX = E(nY (1 = Y)) + Var(nY) = n(EY — EY?) + n?VarY’
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3.1.2. It is easier to do this problem in reverse. Let X and Z be independent with binomial distributions
B(n,p) and B(M —n,p), respectively, and let Y = X +Z. We are to show (a) the unconditional distribution
of Y is B(M,p), and (b) the conditional distribution of X given Y =1y is H(n,y, M).

(a) Y is the number of successes in M independent trials with probability p of success on each trial,
and so is B(M, p).

(b) The joint mass function of X and Y
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M —n+z. The conditional mass function of X given Y = y is the ratio of this
~Y namely,
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for max(0,y +n— M) < < min(y,n).

3.1.3. The joint density of Y and Z is
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over —oo < y < oo and 0 < z < oo. First we make the transformation from (Y, Z) to (T,U), where
T =Y/\/Z/v and U = v/Z. The inverse transformation is Y = TU//v and Z = U? over —co < t < 00
and 0 < u < co. The Jacobian of the inverse transformation is

J = det (“/8/17 téf) = 2u%/\/7.

Therefore the joint density of T' and U is
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We find the marginal density of T' by integrating out U using the change of variable z = u/+/(t?/v) + 1 as
follows:
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3.1.4. Since there exists an orthogonal matrix P such that Py = (v,0,...,0)7, we may transform
the problem to Z = PY where X = Z? + --- + Z2 with Z,...,Z, independent random variables with
Zy € N(v,1) and Z; € N(0,1) for j =2,...,n. We are to show that X has density (3.18).

If the result is true for n = 1, then it is clearly true for n > 1 since we just take the result for n =1
and convolute it with the distribution of Z2 + - -+ Z2, namely, the x2_; distribution. Then since the sum
of independent chi-squares is a chi-square with the sum of the degrees of freedom, the result follows.

Therefore, suppose n = 1, and consider the distribution X = Z?. This transformation is 2 to 1, with
inverse transformation Z; = +v/X and Jacobian dz;/dx = +1/(2y/z). Since the transformation is 2 to 1,
the density of X is the sum of the two pieces,
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The terms in square brackets are the probabilities for P(y%/2). We will be finished when we show that the
remaining terms are the chi-square densities, fa;4+1(x), where

. _ 1 2/2i—(1/2)
Jojr(x) = TGt (1/2))2j+(1/2)e x :

Thus, it is a matter of checking that the constants agree. This follows from
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3.1.5. We first derive the density of the central F, , distribution, and then apply (3.18). Let Y and Z
be independent with Y € x2 and Z € x2. The joint density of Y and Z is
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We want to find the density of X = (Y/r)/(Z/n). We make this replacement for Y with Y =rXZ/n and
dy/dx = rz/n. Hence
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To find the density of the central F, , distribution, we integrate out z, and denote the result by g, (z):
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for > 0. To find the density of the noncentral F, ,(v?), we let Y have density (3.18) with n replaced by
r, and let Z be an independent x?2. The joint density of Y and Z is
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We make the same change of variable X = (Y/r)/(Z/n) for Y and integrate out Z as above to find
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as the density of the noncentral F,.,,(7?). Unfortunately, this is not the same as (3.19). The correct version
of (3.19) is
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3.1.6. The density of the F,, distribution is
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for £ > 0. The inverse of the change of variable Y = rX/(rX +n) is X = (n/r)Y/(1-Y) where 0 <Y < 1,
and the Jacobian is dx/dy = (n/r)/(1 — y)?. The density of Y is then proportional to
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for 0 <y < 1. Thus, Y has the Be(r/2,n/2) distribution.
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3.1.7. X =z if and only if exactly x of the first x — a — 1 balls drawn are black, and the (z 4+ «)th
ball drawn is white. The probability of this may be computed as
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which is the mass function of BB(«, 3,n).



