Solutions to the Exercises of Section 2.11.

2.11.1. Proof. Let € be an arbitrary positive number. Since r(7,,0,) — C, we can find an integer n
such that r(7,,d,) > C — ¢. Then, as in the proof of Theorem 1,

V <supR(6,6) < C < r(Tn,6n) +€ < ilgfr(Tn,(S)—l—e <V+e
0

Since this holds for all € > 0, we have

This shows that the value exists and is equal to C and that dy is minimax. m

2.11.2. Proof. Let 79 be least favorable and let 6y be in the support of 79. (This means for every
e > 0 that 70(0p —€,6p +€) > 0.) Suppose that R(fy,dp) < V. Since R(f,dp) is continuous, there exists an
€ > 0 such that R(6,00) <V for all 6 in (6p —¢,6p+¢), a set of positive measure. But since gy is minimax,
we must have R(6,00) <V for all 6. Hence,

V = T(TQ, 50) = /R(Q, 50) dTQ(e) < V.

This contradiction completes the proof. m

2.11.3. Proof: Let §p be an equalizer rule with R(f,dp) = c¢. If §y were not minimax, then there would
exist a rule §’ such that sup, R(6,d’), call it v, would be strictly less than supy R(6,dp) = ¢. For any e
such that 0 < € < ¢ — v and any prior, 7, we have

r(m do) =c>v+e>r(md) +e

Thus, dp cannot be e-Bayes with respect to any prior distribution, and so dg cannot be an extended Bayes
rule. =

2.11.4. If d is an equalizer rule, then R(6,d) = ¢ for some constant ¢. Hence, r(7,d) = ¢ for all T € ©*,
and hence sup, r(7,d) = c. If d were not minimax, then there would exist a rule dy with smaller maximum
risk: sup, r(7,do) = ¢1 < c¢. This implies R(6,dp) < ¢1 < ¢ = R(0,d) for all 0, showing that d is not
admissible.

2.11.5. Take ©® = {1,2,...} and A={0,1,2,...} and L(A,a)=1if 0 <a, L(f,a) = -1 if 0 <a <@,
and L(A,a) =0 if a =0 orif a =0. Then d = 0 is an equalizer rule (L(6,0) = 0), and d is admissible
since nature can do better than zero against any § # d by taking 6 large enough. Hence, d is minimax
from 2.11.4. But the value does not exist since the lower value is still —1 as in (2.24) on pg. 83, and the
upper value is now zero. Furthermore, d cannot be Bayes with respect to any 7, since r(7,d) = 0 and the
statistician can do better than zero against 7 by choosing a sufficiently large.

2.11.6. In the problem with © = {6y, 65}, A= [0,7/2] and loss L(61,a) = — cos(a), L(f2,a) = —sin(a),
the loss is convex in a for each 6 so that attention may be restricted to the nonrandomized rules. The
observations are X =0 or 1, with P(X =1]0;) = 1/3, and P(X = 1]62) = 2/3. The nonrandomized rules
are of the form (ap,a1) where a; is the action we take if X = j is observed, j =0 or 1. For d = (ag, a1),
we have

If 7y gives probability 1/2 to each state of nature, then

r(10,d) = —(1/6)(cos(ay) + 2sin(ay) + 2 cos(ag) + sin(agp)).



The values of ap and a; that minimize this may be found by taking derivatives and equating to zero. This
gives tan(a;) = 2 and tan(ag) = 1/2, which gives the Bayes rule with respect to 79, call it dp. From this,
we find sin(a;) = 2/v/5 = cos(ag) and cos(a;) = 1/4/5 = sin(ap), so that the risk function of dy is

R(61,do) = —(1/3)(1/V5 +4/V5) = —V/5/3.
R(0s,do) = —(1/3)(4/V5+ 1/V/5) = —/5/3.

Thus, the Bayes risk of dy is also —v/5/3, so from Theorem 2.11.1 we may conclude that dy is minimax
and T7g is least favorable.

2.11.7. (a) Since A = [0,1] and X takes on two values, say X =1 if heads and X = 0 if tails, D is
the unit square, where d = (ag, a1) represents the decision to choose a; if X = j.
(b) If d = (z,y) € D, then

R(1/3,d) = (2/3)z* + (1/3)3?
R(2/3,d) = (1/3)(1 — x) + (2/3)(1 — ).

(c¢) A prior distribution may be represented by p, the probability that 6§ = 1/3. The Bayes risk of
de D is
r(p, d) = p[22® +y°]/3+ (1 = p)[(1 — 2) +2(1 - )]/3.
Setting derivatives with respect to z and y to zero gives 4px — (1 — p) = 0 and 2py — 2(1 — p) = 0, from
which we find the Bayes rule to be

r=(1-p)/dp ifp>1/5 and x=1 if p>1/5.
=(1-p)/p ifp>1/2 and y=1 if p<1/2

The set of such (x,y) as p ranges from 0 to 1 consists of two lines, the line y = 4z from (0,0) to (1/4,1)
(for p > 1/2), and the line y = 1 from (1/4,1) to (1,1) (for p < 1/2).

(d) We search for an equalizer rule on the line y = 4a. Set R(1/3, (x,4z)) = R(2/3, (x,4x)) and solve
for z: (2/3)2® 4+ (1/3)(4x)? = (1/3)(1 — z) + (2/3)(1 — 42) implies that 622 + 3z — 1 = 0. Since this gives
r=(V33-3)/12=.2287--- and y = (/33— 3)/3 = .9148 - - - and both are in A, this is the minimax rule.
The minimax risk is 1 — 3x = .3139 - - -.

2.11.8. The risk function of the rule d(z) = z/n is

R(9,d) = E{(X/n—0)*/(0(1 - 0))|0} = Var(X/n|0)/(6(1 - 0))
={0(1 = 0)/n}/(6(1 - 0)) = 1/n,

a constant, so that d is an equalizer rule. From Exercise 1.8.9, d is a Bayes rule for the uniform prior
distribution on 6. Therefore, from Theorem 3, the rule d is minimax.

2.11.9. (a)
(0 —d(X))?

R(0,d) = o
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(6 — 20d(z) + d(z)?)6"
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x=0

= d(0) +0(d(1)® — 2d(0 Z —2d(x —1) + 1)6*

(b) d is an equalizer rule if and only if

dz)?=2d(xr—1)—1 for z=2,3,...



We are to show that the only solution in A to these equations is given by d(0) = 1/2 and d(z) = 1 for
x > 1. For > 2, the lower equations imply that 2d(zx — 1) = d(z)? + 1 = (d(z) — 1) + 2d(z) > 2d(x),
so that the d(x) are nonincreasing from x = 1 on. Hence, the d(x) converge, say, to some number ¢, and
applying lim,_,., to the lower equations gives c¢? = 2c — 1, from which we conclude that ¢ must be equal to
one. The only nonincreasing sequence in [0,1] that converges to one is the sequence identically one. Hence,
d(1) =d(2) =--- =1, and from the top equation, d(0) = 1/2 is the unique equalizer rule.

(¢) From part (a),

r(r,d) = E R(0,d)

= d(0)% + p1 (d(1)? = 2d(0 Z V2 —2d(x — 1) + 1)py

We may find the Bayes rule by taking the derivative with respect to each d(z) separately, and setting equal
to zero, to find
dr (%) = pgy1 /e for z=0,1,2,...

(d) For d to be a Bayes rule with respect to 7, we must have d(z) = pgr1/p, for x =0,1,2,..., which
reduces to 1 = pg = pg = --- = 1/2. There is a distribution, 7, with these moments, namely, the two
point distribution, 7(0) = 1/2, and 7(1) = 1/2. Unfortunately, 1 is not in the parameter space, so d is not
a Bayes rule. To show that it is extended Bayes, we look at the distributions, 7., that give weight 1/2 to
0 and weight 1/2 to 1 — e. For this distribution, u, = (1 — €)*/2 and the Bayes rule with respect to 7 is
de(0)=(1—¢€)/2,and de(z) =1—¢€ for x = 1,2,.... To compute the minimum Bayes risk, note since d,
takes on only two values,

o= (=0/2 (6 (1)

= 1—
and since 6 takes on only two values,
o ll-e, 1 l—e, (1—¢?
r(rede) = 5 (=) + 5le = —5=) =~

Since the constant risk of the rule d is 1/4, and since the minimum Bayes risk of 7. converges to 1/4 as
€ — 0, d is extended Bayes and hence minimax.

2.11.10. (a) The risk function of the rule dy is

= X+\/ﬁ2_ X+Vn np1 +/n.o
R(e, do) = EG(Ml - m) = Var(m) + (Ml — W)
__ no? N (mvn —vn/2)?  n(ps — 1 +1/4)
CESVOEAN VY CEOL

This risk is maximized by that distribution, 6 on [0, 1], that maximizes po — p1 = —E(Z(1 — Z)), where Z
has distribution #. This is never positive and is equal to zero if and only if 6 gives all its mass to the points
Z =0 and Z = 1. The maximum risk is then maxy R(6,do) = (1/4)/(v/n + 1)2.

(b) From pages 93-94, dj is a Bayes rule with respect to the distribution that chooses p at random from
a Beta distribution, Be(y/n/2,/n/2), and gives mass p to 1 and mass 1 —p to 0. The minimum Bayes risk
with respect to this prior is (1/4)/(v/n + 1)?, the same as the maximum risk of the rule do. Hence dy is
minimax from Theorem 1.

2.11.11. (a) R(0,do) = Ea{(6 — X)2/0} =6/0 = 1.
(b) The generalized Bayes risk is

= > —d(zx 26_0 r—1 T
;)/0 (0 —d(z))?e 00" /! df.




For x = 0, the integral is 400 unless d(0) = 0. For x > 0, the integral is minimized if d(x) is chosen to be
the mean of the gamma distribution, G(x, 1), namely, d(x) = x. Thus, dy is a generalized Bayes rule.

(c) For the prior 74,3 = G(«, 3), the posterior distribution is proportional to e 97e=0/Pg2=1 5o that
the posterior distribution is G(« + z, 8/(8 + 1)). The Bayes risk is proportional to

> / (0 — d(z))%e 070789+ e=2 4o/ z1.
z=0"0

If a+x —1 <0, the integral is infinite unless d(0) = 0. For o+ — 1 > 0, the integral is minimized by the
mean of G(a+x —1,8/(6+ 1)), namely, (« +2 —1)3/(8 + 1). This determines the Bayes rule to be

do,g(r) =max{0, (a+x — 1)58/(8+1)}.
(d) Take o =1 and find the risk function of the rule d; g
R(0,dy1,5) = Eo(0 — BX/(5+1))*/0

= Var(8X/(8 +1)10)/0 + (0 — 60/(5 +1))*/0
= (8/(B+1))* +6/(8+1)*

The minimum Bayes risk is thus

T(Tlﬂ, dlﬂ) = ER(@, dlﬁ)
=(B/(B+1)*+8/(B+1)>=8/(B+1).

As  — oo, this risk tends to 1. Since the rule of part (a) has constant risk 1, its Bayes risk is also 1,
showing that it is e-Bayes for every € > 0. This implies that it is minimax.

2.11.12. (a) X has the negative binomial distribution, N'B(r, p) = NB(r,0/(6+1)), where 6 = p/(1—p)
represents the odds. Since E(X|0) =rp/(1 —p) =760 and Var(X|0) = rp/(1 — p)? = rf(6 + 1), we have

R(0,do) = Var(X/r|0)/(0(0 + 1)) = 160 +1)/(r20(0 + 1)) = 1/r.

(b) The generalized Bayes rule minimizes for each x

(1) /O h 7(99(_961? 670 + 1)) g,

If 2 =0, the integral is infinite unless d(0) = 0. For x > 0, the minimum occurs at
d(z) = /9%(9+ 1)~ (rtetl) de//ef—1(9+ 1)~ (r=+1) g
— [ra-prtap) [ta-prap
=T+ 1)) /T(x+r+1)/T(@)T(r+1)/T(x+r+1)) =z/r

(A minor point: If » = 1, the integral (1) is infinite no matter what d(x) is chosen to be, so technically d(x)
could be anything.)

(c) When 6 has the indicated distribution (p € Be(«, 3)), the minimum of the Bayes risk occurs at 0 if
a+x—1<0, and otherwise at

O ) i) a1
fgoz—i-x—Q(g + 1)—((y+[3+r+x+1 do B_'_ 1

da,5(2)
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(d) The risk function of d(x) =z/(r+1) is

R(0,d) = [Var(X/(r +1)|6) + (6 — r6/(r +1))?]/(6(6 + 1))
=r/(r+1)>+(0/(0+1))/(r+ 1)

Since 6/(0 + 1) < 1 for all 8, we have R(A,d) < 1/(r +1) < 1/r, the risk of dp, so dy is not minimax
in spite of the fact that it is an equalizer and generalized Bayes. (This shows that dy cannot be extended
Bayes.) To show that d is minimax, we note that d is a limit of Bayes rules in part (c) for a =1 as § — 0.
We show that the minimum Bayes risk of di g tends to 1/(r + 1) as 3 — 0; then, Theorem 2 implies that
d is minimax.

(s, d1g) = E{(0 — X/(B+7+1))*/(0(0 + 1))}
= E{[Var(X/(B + 7+ 1)[0) + (0 —r0/(8 +r+1))*]/(0(6 + 1))}
=E{r/(B+r+1)2+((B+1)/(B+r+1)%0/0+1))}
=r/B+r+ 1)+ ((B+D/(B+r+1)*(1/(1+0))
—r/(r+1)2+1/(r4+1)>2
=1/(r+1).

2.11.13. The rule dy of formula(2.32) is admissible for the problem considered there because it is unique
Bayes with respect to the Be(y/n/2,+/n/2) prior.

2.11.14. (a) The density functions for § and X are
() (5=2)
(%)

where B(a, () is the beta function, B(«, 5) = T'(a)T'(8)/T'(a + ). Since > g(f) =1, we have the identity

f(z]0) =

_ (M\B(a+0,8+M —10)
9(”‘(9) B9

3 (A:>B(a+9,ﬁ+M—9) — B(a, )

0

from which we may compute the marginal distribution of X:

fla) = 29: (Z) (A:__D B+ %’(i\f;) £-6) (let 7= 0 — z)
_ (Z) T (MT— n> B(t+z - a, (]g(;fg)—l- (n—x+p))

N

which is beta-binomial, BB(«a, 3,n).

(b) The conditional distribution of 7 =6 — 2 given X = x has density f(z|r 4+ x)g(7 + x)/f(x) which
is easily computed to be the beta-binomial, BB(a + z,8+n —x, M —n).

(c) Since the mean of BB(a,3,n) is na/(a + ), the Bayes estimate of 6, being = plus the mean of
BB(a+x,8+n—x,M—n),is

dop(x) =+ (M —n)(a+z)/(a+F+n)
=[(M+a+pB)r+aM—n)/(a+5+n)

which is linear in x.



(d) The risk function of the linear estimate d(x) = ax + b is

R(#,d) = Eg(f — aX — b)?
= Var(aX + b|0) + (6 — anf/M — b)?
=a*n(M — 0)(M —n)/(M*(M — 1))+ (8(1 — an/M) — b)*

(e) Assume 0 < n < M to avoid trivial cases. The risk in (d) is quadratic in # and can be made
constant by choosing a and b so that the linear and quadratic terms disappear, giving constant risk b2. The
linear and quadratic terms are proportional to

0*[—a*n(M —n) + (M — an)*(M — 1)] and 0la*n(M —n) — 2b(M — an)(M — 1)]

Setting the coefficients of the linear and quadratic terms to zero gives a = M/2, b= M/4 when n =1, and
for n > 1:

a=(1+6)(M-1)/(n—-1) and

b=n(M —n)a®/(2(M — an)(M — 1)) = (M — an)/2

(or the values given in the text), where 6§ = (M —n)/n(M —1))'/2.
(f) To check that d(z) is a Bayes rule, we equate to (c) and solve for a and (3 to see that both are
positive. This occurs if the minus sign is used in the formula for a, and we find

a=03=>b/(a—1)=Mén/(2(M — (14 d)n).

This is positive if and only if n < M — 1, and so the resulting rule is minimax in this case. For example, if
M =9 and n=3,wefind 6 =1/2, a =2, and b= 3/2, so that d(z) = 2z + 3/2 is minimax with constant
risk 9/4.

If n = M — 1, the above analysis does not work, but one can try to show that the corresponding
equalizer d(x) = x4+ 1/2 is minimax by showing it is extended Bayes (e-Bayes with respect to BB(«, 8, M)
for a = 3 sufficiently large) or Bayes with respect to the binomial distribution, B(M,1/2).

2.11.15. The rule d(x) = 1/2 has constant risk function, R(6,d) = 1. Moreover, the risk at § =1/2 of
any rule, §,is 1, R(1/2,) = 1, so infssupy R(,6) = 1. Hence, sup, R(,d) = infssupy R(6,0), and d is
minimax.

2.11.16. The risk function for the rule d =x € D = {x = (g, 21, -, %) : 0 < x; <1 for all j} is

n

R.d) =Y (Z’) 07 (1 — 0)" I L(0, ;).

=0

Since L(6,0) = 1, the rule dg = 0 has constant risk, R(#,0) = 1. We are to show that dp is the unique
minimax rule. We will show that for any rule § € D* other than dy there exists a value of 6 such that
R(0,9) > 1.

R(6,5) = / R(6, %) do(x)

_ g (Z‘) 0 (1 — 0" L(6, 5,)

where §; € A* is the marginal distribution of x;. First we note the following lemma.
Lemma. For § € A*, L(6,0) — 1+ 6(0,1] as 6§ — 0.

Proof.
1

L(8,5) = / L(6, a) dd(a) = /O _L(0.a)d5(a) + 5(0)
o[ 2ds(a) + 5(0)

0+

=26(0,1]4+1-0(0,1]=1+46(0,1]. m
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We now proceed to show that for any rule ¢ not degenerate at 0, R(6,6) > 1 for 6 sufficiently close to
zero. If, §g is not degenerate at zero, then R(6,0) — 1+ dp(0,1] > 1 as § — 0. If &y is degenerate at zero,
then R(6,d) — 1, unfortunately; so instead we work with

R(6.5)-1=Y (Z’) 67 (1 — 0"~ (L(6,5;) — 1)
§=0

If §o is degenerate at zero but J; is not, then

(R(0,6) —1)/0 =n(1 —0)"1(L(6,6,) — 1) + 6 - (other terms)
—41(0,1] >0 as 0 — 0.

Hence, R(6,6) > 1 for 6 sufficiently close to zero. Similarly, if ¢ is not degenerate at 0, there is a smallest
j such that d; is not degenerate at zero, and then

(R(6,6) —1)/6" — 6,;(0,1] > 0,

showing that R(6,6) > 1 for 6 sufficiently close to zero.



