Solutions to the Exercises of Section 2.8.

2.8.1. Let z = (21,...,zx00)7 € S1, w = (wi,...,wps1)’ € 81, and 0 < 3 < 1. Then, x =
(21,...,z20) € S and y = (wy,...,wi)? € S, and f(x) < 2141 and f(y) < wpy1. Since S is convex,
Gx+(1—B)y €5, and'since f is convex, f(fx +(1— B)y) < BF(x) + (1~ B)f(y) < Bzpr + (1 — Bwesn
Hence, fz 4 (1 = f)w = (Bz1 + (1 = Blwi, . .., Bzk 1 + (1 = Blwgr)” € Si.

2.8.2. (a) Let f(z) be a convex function defined on an interval I of the real line, and let xy be an
interior point of I. Find 1 € I and x5 € I such that x1 < zg < z2. Let x¢p < z < x2. From convexity, we

have
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We have f(x) bounded above and below to the right of xg by functions that converge to f(xg) as = tends

to xo from the right. Therefore, f(x) is continuous from the right at z¢. By symmetry, f(z) must also be

continuous from the left at =y, and so f is continuous at xg. Since g is arbitrary, this completes the proof.
(b) Let f(x) be defined on the closed interval [0,1],as f(z) =0 for 0 <z <1, f(0) =1, and f(1) =

It is easy to see that f is convex on [0, 1], but not continuous at z =0 or x =1..

2.8.3. If L(a) > e|a| + ¢ for some € > 0, then L(a) — oo as |a|] — oo, whether or not L is convex.

Conversely, assume without loss of generality that 0 € A, and let b = L(0). Since L(a) — oo as
|a] — 0o, we may find z > 0 such that L(a) > b+ 1 for all |a] > z. Then, from the convexity of L, we
have L(a) > |a|/z + b for |a] > z. For |a| < z, L(a) is bounded below by some number, say c¢: L(a) > ¢
for |a] < z. Then, L(a) > |a|]/z+ (¢ —1) for all a € A, completing the proof.

2.8.4. Suppose EZ = co. We are to show that there is no number a > 0 such that L(6,a) < EL(0, Z)
for all & > 0. We will show that e~ % > Ee %2 or equivalently that E(1 — e ?¢=%) > 0, for all
sufficiently close to zero. First note, since the slope of 1 —e™ is 1 at the origin, that given any a < 1 there
is a sufficiently small number B(«a) such that if 0 < z < B(«), then 1 —e™* > az. (B(«a) is the positive
root of the equation 1 — e * = az.) Hence,

E(1—e %9y > B{(1 - e ?%=N[(0(Z — a) < B(a))}
> abE{(Z — a)I((Z — a) < B(a)/6)}.

Since FZ = oo, this last expectation tends to infinity as 6 tends to 0, showing that for 6 sufficiently small,
the right side of this inequality is positive, and completing the proof.

2.8.5. First we show a special case. Suppose g(x) is a function with nonnegative second derivative,
deﬁned on an interval containing 0 and 1 in the interior. Then the Fundamental Theorem of Calculus gives
g(x) = g(0) + fo y) dy. Applying the same theorem once again to ¢'(y) gives
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If we put « = 1 in this equation, solve for ¢’(0), and substitute back into this equation, we find

g(x) = g(0) + x[g(1) —1:/ / dzdy+/ / z)dzdy

— 2g(1) + (1 — 2)g(0) — / "(z)dz + / J'(2)(x — 2) dz

— 2g(1) + (1 - 2)g(0) — /
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(a) and (b): Let x and y be elements of S. For 0 < a < 1, let g(a) = f(ax + (1 — a)y). Then
g satisfies the conditions of the above result with ¢'(a) = flax + (1 — a)y)”(y — x), and, since [ is
assumed to be nonnegative definite, ¢’ (a) = (y — x)Tf(ax + (1 — a)y)(y — x) > 0. Hence we have

flax+ (1= a)y) =g(a) < ag(l) + (1 — a)g(0) = af(x) + (1 — ) f(y).
For the converse, let z € S, take @ = 1/2, x =z + €a and y = z — ea, where a is an arbitrary unit
vector and € > 0 is sufficiently small so that x € S and y € S. The convexity of f then implies that

f(z) = F(1/2)x + (1/2)y) < (1/2)[f(x) + f(y)] = (1/2)[f(z + €a) + f(z — ea)]. This is equivalent to
[f(z+e€a) = f(z)] = [f(z —ea) — f(z)] = 0.

Now divide both sides by ¢ and let e — 0 to find al'f (z)a > 0. This is true for all unit vectors a and
hence for all vectors a, showing that f is nonnegative definite.
(¢) f(x) is convex on S if and only if

(1) fipx+ (1 =ply) <pf(x)+ (L —p)f(y) forallxe S, yeSand 0<p<1.

For 0 <a <1,let h(a) = f(ax+ (1 —a)y). The convexity of h for every x € S and y € S is equivalent to

h(pa+ (1 —p)B) < ph(a)+ (1 — p)h(3)

or, equivalently,

@) Sfllpa+ (1 =p)B)x+ (1 —pa—(1-p)By] <pflax+ (1 -a)yl+ (1 -p)fox+ (1 - Pyl

forall 0 < p < 1. (1) with x and y replaced by ax + (1 — a)y and fx + (1 — 3)y respectively, gives (2).
And (2) with =1 and 8 =0 gives (1). Thus, (1) and (2) are equivalent.

2.8.6. We compute the matrix of second derivatives of f and show it is nonnegative definite. Then
Exercise 2.8.5(b) implies that f is convex.
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The coefficient in front of the matrix is positive, so we just check the matrix is nonnegative definite:
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2.8.7. Since f is convex, Jensen’s inequality implies that Ef(X,Y) > f(EX,EY), or equivalently
—EXPY1=P > —(EX)P(EY)!P, which gives Holder’s inequality.

2.8.8. (Note: There is a misprint in the definition of the density fx(z). The quantity (z2) should be
(i) .) The rule § corresponds to the behavioral rule: if 2 = 0, choose 0 w.p. 1/2 and choose 1/2 w.p. 1/2;
if x =1, choose 1/2; if & = 2, choose 1/2 w.p. 1/2 and choose 1 w.p. 1/2. Since the loss is convex, we may
obtain a better rule by replacing §(X) by its expectation: d(0) =1/4, d(1) =1/2, and d(2) = 3/4. Since
R(0,d1) = Eg(0 — X/2)? = Var(X|0) = 6(1 — 0)/2, and R(0,ds2) = Eg(6 —1/2)? = (0 —1/2)?, we have

R(0,6) = 0(1 —0)/4 4 (6 — 1/2)%/2.
Since d(X) = (X +1)/4, we have

R(0,d) = Var(d(X)|0) + Bias(d(X)|6)?
=0(1-0)/8+(0—1/2)%/4,

2



exactly half the value of R(6,4).

2.8.9. (Note: In the definition of “strictly convex”, it should be assumed that x # y.) In the proof of
Jensen’s inequality, proceed as far as equation (2.13) and consider the case py+1 > 0. In this case, we may
divide through the inequality by pxi1 and define p’; = p;/py+1. This gives the inequality

k

(3) f(BZ) < f(z) + Y pj(z; —EZ;) forallzeS.

We clearly have equality at z = EZ € S. We want to show that there is strict inequality at all other points
z € S. Suppose there is equality at some other point z’ € S. Let z” = (1/2)EZ + (1/2)z'. Then, z’ € S
and since f is strictly convex, we have

k
f(@") < (1/2)f(EZ) + (1/2)f(2) = f(EZ) = Y_pj[(1/2)z; + (1/2)z; — EZ}]
k
= [(BZ) = ) pjlz] — EZ)]

which contradicts (3). Therefore, (3) holds with strict inequality at all points of S other than EZ. If we
now replace z in (3) with Z and take expectations, we would have f(EZ) < Ef(Z) with strict inequality
unless Z gives its entire mass to the point EZ.

2.8.10. We prove the more general statement: If D’ C D*, and D’ is essentially complete, and if
S" = {(R(1,9),...,R(0,0)): 5 € D'} is closed, then S is closed from below.

Proof. Let x € A(S), i.e. QxNS= {x}. We are to show that x € S. Since x € S, we may find
points x3,Xs,... € S, such that x, — x as n — oo. Since D’ is essentially complete, there are points
x1,%5, ... €8, such that x; < x; for all i. It is sufficient to show that x is a limit point of the x/,, since
then xe § =9 CS.

Suppose that x is not a limit point of the x,,. Then there is a 6 > 0 such that |x — x],| > ¢ for all
n. For n sufficiently large, |x — x,| < §. Hence, there exist y € S on the line joining x,, and x/,, such
that |x —y,| = d. Since S is convex, and x,, € S and x|, € S’ C S, we have y,, € S. Since the {y,} are
bounded, there exists a limit point, call it y. Then y € S, and since x,, < x, — x, we have y < x. i.e.
y € Qx. Thus, y € Qx N S, and yet y # x since d(x,y) = 6. Contradiction. m



