
Solutions to the Exercises of Section 2.8.

2.8.1. Let z = (z1, . . . , zk+1)T ∈ S1 , w = (w1, . . . , wk+1)T ∈ S1 , and 0 ≤ β ≤ 1. Then, x =
(z1, . . . , zk)T ∈ S and y = (w1, . . . , wk)T ∈ S , and f(x) ≤ zk+1 and f(y) ≤ wk+1 . Since S is convex,
βx + (1− β)y ∈ S , and since f is convex, f(βx + (1− β)y) ≤ βf(x) + (1 − β)f(y) ≤ βzk+1 + (1− β)wk+1 .
Hence, βz + (1 − β)w = (βz1 + (1 − β)w1, . . . , βzk+1 + (1 − β)wk+1)T ∈ S1 .

2.8.2. (a) Let f(x) be a convex function defined on an interval I of the real line, and let x0 be an
interior point of I . Find x1 ∈ I and x2 ∈ I such that x1 < x0 < x2 . Let x0 < x < x2 . From convexity, we
have

f(x) ≤ x− x0

x2 − x0
f(x2) +

x2 − x
x2 − x0

f(x0).

Similarly, since x1 < x0 < x , we have

f(x0) ≤ x0 − x1

x− x1
f(x) +

x− x0

x− x1
f(x1)

which translates to
f(x) ≥ x− x1

x0 − x1
f(x0) − x− x0

x0 − x1
f(x1).

We have f(x) bounded above and below to the right of x0 by functions that converge to f(x0) as x tends
to x0 from the right. Therefore, f(x) is continuous from the right at x0 . By symmetry, f(x) must also be
continuous from the left at x0 , and so f is continuous at x0 . Since x0 is arbitrary, this completes the proof.

(b) Let f(x) be defined on the closed interval [0, 1] , as f(x) = 0 for 0 < x < 1, f(0) = 1, and f(1) = 1.
It is easy to see that f is convex on [0, 1] , but not continuous at x = 0 or x = 1..

2.8.3. If L(a) ≥ ε|a| + c for some ε > 0, then L(a) → ∞ as |a| → ∞ , whether or not L is convex.
Conversely, assume without loss of generality that 0 ∈ A , and let b = L(0). Since L(a) → ∞ as

|a| → ∞ , we may find z > 0 such that L(a) ≥ b + 1 for all |a| ≥ z . Then, from the convexity of L , we
have L(a) ≥ |a|/z + b for |a| ≥ z . For |a| ≤ z , L(a) is bounded below by some number, say c : L(a) ≥ c
for |a| ≤ z . Then, L(a) ≥ |a|/z + (c− 1) for all a ∈ A , completing the proof.

2.8.4. Suppose EZ = ∞ . We are to show that there is no number a > 0 such that L(θ, a) ≤ EL(θ, Z)
for all θ > 0. We will show that e−θa > Ee−θZ , or equivalently that E(1 − e−θ(Z−a)) > 0, for all θ
sufficiently close to zero. First note, since the slope of 1−e−x is 1 at the origin, that given any α < 1 there
is a sufficiently small number B(α) such that if 0 ≤ z ≤ B(α), then 1 − e−z ≥ αz . (B(α) is the positive
root of the equation 1 − e−z = αz .) Hence,

E(1 − e−θ(Z−a)) > E{(1 − e−θ(Z−a))I(θ(Z − a) ≤ B(α))}
≥ αθE{(Z − a)I((Z − a) ≤ B(α)/θ)}.

Since EZ = ∞ , this last expectation tends to infinity as θ tends to 0, showing that for θ sufficiently small,
the right side of this inequality is positive, and completing the proof.

2.8.5. First we show a special case. Suppose g(x) is a function with nonnegative second derivative,
defined on an interval containing 0 and 1 in the interior. Then the Fundamental Theorem of Calculus gives
g(x) = g(0) +

∫ x

0
g′(y) dy . Applying the same theorem once again to g′(y) gives

g(x) = g(0) +
∫ x

0

[g′(0) +
∫ y

0

g′′(z) dz] dy = g(0) + xg′(0) +
∫ x

0

∫ y

0

g′′(z) dz dy.

If we put x = 1 in this equation, solve for g′(0), and substitute back into this equation, we find

g(x) = g(0) + x[g(1) − g(0)] − x
∫ 1

0

∫ y

0

g′′(z) dz dy +
∫ x

0

∫ y

0

g′′(z) dz dy

= xg(1) + (1 − x)g(0) − x
∫ 1

0

g′′(z) dz +
∫ x

0

g′′(z)(x − z) dz

= xg(1) + (1 − x)g(0) − x
∫ 1

x

g′′(z)(1 − z) dz − (1 − x)
∫ x

0

g′′(z)z dz

≤ xg(1) + (1 − x)g(0).



(a) and (b): Let x and y be elements of S . For 0 ≤ α ≤ 1, let g(α) = f(αx + (1 − α)y). Then
g satisfies the conditions of the above result with g′(α) = ḟ(αx + (1 − α)y)T (y − x), and, since f̈ is
assumed to be nonnegative definite, g′′(α) = (y − x)T f̈(αx + (1 − α)y)(y − x) ≥ 0. Hence we have
f(αx + (1 − α)y) = g(α) ≤ αg(1) + (1 − α)g(0) = αf(x) + (1 − α)f(y).

For the converse, let z ∈ S , take α = 1/2, x = z + εa and y = z − εa , where a is an arbitrary unit
vector and ε > 0 is sufficiently small so that x ∈ S and y ∈ S . The convexity of f then implies that
f(z) = f((1/2)x + (1/2)y) ≤ (1/2)[f(x) + f(y)] = (1/2)[f(z + εa) + f(z − εa)] . This is equivalent to

[f(z + εa) − f(z)] − [f(z− εa) − f(z)] ≥ 0.

Now divide both sides by ε2 and let ε → 0 to find aT f̈(z)a ≥ 0. This is true for all unit vectors a and
hence for all vectors a , showing that f̈ is nonnegative definite.

(c) f(x) is convex on S if and only if

(1) f(px + (1 − p)y) ≤ pf(x) + (1 − p)f(y) for all x ∈ S , y ∈ S and 0 ≤ p ≤ 1.

For 0 ≤ α ≤ 1, let h(α) = f(αx+(1−α)y). The convexity of h for every x ∈ S and y ∈ S is equivalent to

h(pα+ (1 − p)β) ≤ ph(α) + (1 − p)h(β)

or, equivalently,

(2) f [(pα+ (1 − p)β)x + (1 − pα− (1 − p)β)y] ≤ pf [αx + (1 − α)y] + (1 − p)f [βx + (1 − β)y]

for all 0 ≤ p ≤ 1. (1) with x and y replaced by αx + (1 − α)y and βx + (1 − β)y respectively, gives (2).
And (2) with α = 1 and β = 0 gives (1). Thus, (1) and (2) are equivalent.

2.8.6. We compute the matrix of second derivatives of f and show it is nonnegative definite. Then
Exercise 2.8.5(b) implies that f is convex.

A =
(
fxx(x, y) fxy(x, y)
fxy(x, y) fyy(x, y)

)

= p(1 − p)
(
xp−2y1−p −xp−1y−p

−xp−1y−p xpy−p−1

)

= p(1 − p)xp−2y−p−1

(
y2 −xy
−xy x2

)
.

The coefficient in front of the matrix is positive, so we just check the matrix is nonnegative definite:

(a b)
(
y2 −xy
−xy x2

)(
a
b

)
= (ay − bx)2 ≥ 0.

2.8.7. Since f is convex, Jensen’s inequality implies that Ef(X, Y ) ≥ f(EX,EY ), or equivalently
−EXpY 1−p ≥ −(EX)p(EY )1−p , which gives Hölder’s inequality.

2.8.8. (Note: There is a misprint in the definition of the density fX(x). The quantity (x2) should be(
2
x

)
.) The rule δ corresponds to the behavioral rule: if x = 0, choose 0 w.p. 1/2 and choose 1/2 w.p. 1/2;

if x = 1, choose 1/2; if x = 2, choose 1/2 w.p. 1/2 and choose 1 w.p. 1/2. Since the loss is convex, we may
obtain a better rule by replacing δ(X) by its expectation: d(0) = 1/4, d(1) = 1/2, and d(2) = 3/4. Since
R(θ, d1) = Eθ(θ −X/2)2 = Var(X|θ) = θ(1 − θ)/2, and R(θ, d2) = Eθ(θ − 1/2)2 = (θ − 1/2)2 , we have

R(θ, δ) = θ(1 − θ)/4 + (θ − 1/2)2/2.

Since d(X) = (X + 1)/4, we have

R(θ, d) = Var(d(X)|θ) + Bias(d(X)|θ)2

= θ(1 − θ)/8 + (θ − 1/2)2/4,

2



exactly half the value of R(θ, δ).

2.8.9. (Note: In the definition of “strictly convex”, it should be assumed that x �= y .) In the proof of
Jensen’s inequality, proceed as far as equation (2.13) and consider the case pk+1 > 0. In this case, we may
divide through the inequality by pk+1 and define p′j = pj/pk+1 . This gives the inequality

(3) f(EZ) ≤ f(z) +
k∑
1

p′j(zj − EZj) for all z ∈ S .

We clearly have equality at z = EZ ∈ S . We want to show that there is strict inequality at all other points
z ∈ S . Suppose there is equality at some other point z′ ∈ S . Let z′′ = (1/2)EZ + (1/2)z′ . Then, z′′ ∈ S
and since f is strictly convex, we have

f(z′′) < (1/2)f(EZ) + (1/2)f(z′) = f(EZ) −
k∑
1

p′j [(1/2)zj + (1/2)z′j − EZj ]

= f(EZ) −
k∑
1

p′j [z′′j − EZj ]

which contradicts (3). Therefore, (3) holds with strict inequality at all points of S other than EZ . If we
now replace z in (3) with Z and take expectations, we would have f(EZ) < Ef(Z) with strict inequality
unless Z gives its entire mass to the point EZ .

2.8.10. We prove the more general statement: If D′ ⊂ D∗ , and D′ is essentially complete, and if
S′ = {(R(θ1, δ), . . . , R(θk, δ)) : δ ∈ D′} is closed, then S is closed from below.

Proof. Let x ∈ λ(S), i.e. Qx ∩ S = {x} . We are to show that x ∈ S . Since x ∈ S, we may find
points x1,x2, . . . ∈ S , such that xn → x as n → ∞ . Since D′ is essentially complete, there are points
x′

1,x
′
2, . . . ∈ S′ , such that x′

i ≤ xi for all i . It is sufficient to show that x is a limit point of the x′
n , since

then x ∈ S′ = S′ ⊂ S .
Suppose that x is not a limit point of the xn . Then there is a δ > 0 such that |x − x′

n| > δ for all
n . For n sufficiently large, |x − xn| < δ . Hence, there exist y ∈ S on the line joining xn and x′

n , such
that |x− yn| = δ . Since S is convex, and xn ∈ S and x′

n ∈ S′ ⊂ S , we have yn ∈ S . Since the {yn} are
bounded, there exists a limit point, call it y . Then y ∈ S, and since x′

n ≤ xn → x , we have y ≤ x . i.e.
y ∈ Qx . Thus, y ∈ Qx ∩ S, and yet y �= x since d(x,y) = δ . Contradiction.
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