
Solutions to the Exercises of Section 1.8.

1.8.1. E(Z − b)2 = Var(Z) + (EZ − b)2 obviously takes on its minimum value of Var(Z) when b = EZ .

1.8.2. We say b0 is a median of a random variable Z if P(Z ≤ b0) ≥ 1/2 and P(Z ≥ b0) ≥ 1/2. Let b0
be any median of Z. First suppose b > b0 . Then,

|z − b0| − |z − b| =
{−(b− b0) if z ≤ b0
2(z − b0) − (b− b0) if b0 < z ≤ b
b− b0 if z > b

≤
{
−(b − b0) if b ≤ b0
b− b0 if b > b0

.

Then, provided Z has a finite first moment, E|Z− b0| −E|Z− b| ≤ (b− b0)P(Z > b0)− (b− b0)P(Z ≤ b0) =
(b− b0)(1− 2P(Z ≤ b0)) ≤ 0. Similarly, for b < b0 , we also have E|Z − b0| −E|Z − b| ≤ 0. This shows that
f(b) = E|Z − b| is minimized at b− b0 .

1.8.3. Rule: For the decision problem with Θ = A = � and loss function,

L(θ, a) =
{
k1|θ− a|, if a ≤ θ,
k2|θ− a|, if a > θ,

where k1 and k2 are known positive numbers, a Bayes rule with respect to a given prior distribution is
to estimate θ as the pth quantile of the posterior distribution of θ given the observations, where p =
k1/(k1 + k2).

A number b is said to be a pth quantile of a distribution of a random variable θ if P(θ ≤ b) ≥ p and
P(θ ≥ b) ≥ 1 − p . Suppose a > b . We are to show that E(L(θ, a)) − E(L(θ, b)) ≥ 0, where b is a pth
quantile. Since for all θ ,

L(θ, a)− L(θ, b) ≥ (a− b)[k2I(θ ≤ b)− k1I(θ > b)],

where I(S) is the indicator function of the set S , we have,

E(L(θ, a) − L(θ, b)) ≥ (a− b)[k2P(θ ≤ b)− k1P(θ > b)]
≥ (a− b)[k2p − k1(1− p)] = 0,

as was to be shown. A similar method works to show that for a < b , EL(θ, a) ≥ EL(θ, b).

1.8.4. In the example with prior distribution (1.27) and distribution of X given θ (1.26), the Bayes
estimate of θ for absolute error loss is the median of the posterior distribution of θ , given as g(θ|x) at the
bottom of page 45. To find the median of this distribution, we solve for the median, m :

1/2 =
∫ ∞

m

e−(θ−x) dθ = e(x−m).

Solving for m gives m = x+log(2) = x+ .693 · · · as the Bayes estimate of θ using absolute error loss, which
is to be compared to the estimate d(x) = x+ 1, the Bayes estimate using squared error loss.

1.8.5. An interval of length 2c , say (b − c, b + c), is said to be a modal interval of length 2c for the
distribution of a random variable θ , if P(b − c ≤ θ ≤ b + c) takes on its maximum value out of all such
intervals. For the loss function

L(θ, a) =
{
0 if |θ− a| ≤ c
1 if |θ− a| > c,

EL(θ, a) = P(|θ − a| > c) = 1− P(a − c ≤ θ ≤ a + c) is minimized if a is chosen to be the midpoint of the
modal interval of length 2c . Rule: In the problem of estimating a real parameter θ with the above loss
function, a Bayes decision rule with respect to a given prior is to estimate θ as the midpoint of the modal
interval of length 2c of the posterior distribution of θ given the observations.

1.8.6. If τ is a prior distribution for θ with density g(θ), and if c = Ew(θ) =
∫
w(θ)g(θ) dθ <∞ , then

g∗(x) = (1/c)w(θ)g(θ) is a density of a prior distribution, call it τ∗ , for θ . If d is Bayes with respect to τ



for loss L(θ, a) = (θ − a)2w(θ), then d is Bayes with respect to τ∗ for loss L∗(θ, a) = (θ − a)2 , because in
either case d minimizes

∫
(θ − d)2f(x|θ)w(θ)g(θ) dθ . Hence, d cannot be unbiased unless r∗(τ∗, d), which

is equal to r(τ, d) =
∫ ∫

(θ − d(x))2f(x|θ)w(θ)g(θ) dθ dx , is zero.
1.8.7. (a) The joint density of θ and X is

h(θ, x) = fX(x|θ)g(θ)
= e−θθx/x! · (Γ(α)βα)−1e−θ/βθα−1

for x = 0, 1, . . . and θ > 0. Hence g(θ|x) is proportional to

e−((β+1)/β)θθα+x−1

for θ > 0, which makes g(θ|x) the gamma distribution G(α + x, β/(β + 1)).
(b) Since the loss is squared error, we have dα,β(x) = E(θ|x) = (α+ x)β/(β + 1).
(c) If d(x) is Bayes with respect to τ , then r(τ, d) = 0. On the other hand, r(τ, d) = E(θ − X)2 =

E(E{(θ−X)2|θ}) = E(θ). If Θ = (0,∞), then E(θ) > 0, since θ > 0. But if Θ = [0,∞), then E(θ) can be
zero, and in fact, d , or any rule d such that d(0) = 0, is Bayes with respect to the distribution degenerate
at 0. (For θ = 0, P(θ) is defined to be degenerate at 0.)

(d) dα,β(x) = (α+ x)β/(β + 1)→ d(x) = x as α → 0 and β → ∞ .
(e) We want to find d to minimize ∫ ∞

0

(θ − d)2e−θθx(1/θ) dθ.

If x = 0, then this integral is +∞ unless d = 0. Hence, d(0) = 0. If x > 0, then minimizing this integral
is equivalent to finding d to minimize E(θ − d)2 when θ has the distribution G(x, 1), and so d(x) = x .

(f) Given ε > 0, let τε be the gamma distribution G(1, ε). Then,

r(τε, d) = E(θ − d(X))2 = E(E{(θ −X)2 |θ})
= E(Var(X|θ)) = E(θ) = ε.

Since the minimum Bayes risk cannot be negative, d certainly comes within ε of minimizing the Bayes risk.
Since ε is arbitrary, d is extended Bayes. (The same must be true of any rule d such that d(0) = 0.)

1.8.8. (a) Writing the joint density h(θ, x) = g(θ)f(x|θ), and neglecting factors that do not involve θ ,
we have

g(θ|x) ∝ θα+x−1 · (1− θ)β+n−x−1,

which is the beta distribution, Be(α + x, β + n − x).
(b) Since the loss is squared error, we have dα,β(x) = E(θ|x) = (α+ x)/(α+ β + n).
(c) d(x) = x/n is an unbiased estimate of θ ; so if d were also a Bayes rule with respect to τ , we would

have r(τ, d) = 0. But r(τ, d) = E(θ − X/n)2 = E(E{(θ −X)2 |θ}) = E(θ(1 − θ))/n , which is greater than
zero because θ(1 − θ) > 0 for θ ∈ Θ. This shows that d is not Bayes.

(d) dα,β(x) = (α+ x)/(α+ β + n) → d(x) as α → 0 and β → 0.
(e) Consider the measure τ on (0,1) such that dτ (θ) = dθ/(θ(1 − θ)). We want to minimize

I =
∫ 1

0

(θ − a)2θx−1(1− θ)n−x−1 dθ.

If x = 0, then I = ∞ unless a = 0. Hence, d(0) = 0. If x = n , then I = ∞ unless a = 1. Hence,
d(n) = 1. If 0 < x < n , then I is minimized by the mean of the Be(x, n − x) distribution, d(x) = x/n .
Thus d(x) = a = x/n minimizes I .

(f) Let ε > 0, and consider the prior distribution τ = Be(ε, 1).

r(τ, d) = E(θ(1 − θ))/n ≤ E(θ)/n = (ε/(ε+ 1))/n ≤ ε.
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This must come within ε of the minimum Bayes risk for this τ .

1.8.9. For loss L(θ, a) = (θ−a)2/(θ(1−θ)) and uniform prior distribution g(θ) = 1, the Bayes rule will
minimize the integral I of 1.8.8(e). Hence the Bayes rule is as found there: d(x) = x/n . Even though d is
an unbiased estimate of θ , this does not contradict Exercise 1.8.6 because E(w(θ)) = E(1/(θ(1 − θ))) = ∞ .

1.8.10. Since the prior distribution of p1, p2 is g(p1, p2) = 1 on the unit square, the joint density of
p1, p2, X, Y is proportional to h(p1, p2, x, y) = fX,Y (x, y|p1, p2). Hence,

g(p1, p2) ∝ px
1(1− p1)n−xpy

2(1− p2)n−y,

so that the posterior distribution of p1 and p2 are as independent random variables with p1 ∈ Be(x+1, n−
x+ 1) and p2 ∈ Be(y + 1, n− y + 1). The Bayes estimate of p1 − p2 is therefore

d(x, y) = E(p1 − p2|x, y) = (x+ 1)/(n+ 2)− (y + 1)/(n+ 2).
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