Solutions to the Exercises of Section 1.8.

1.8.1. E(Z —b)? = Var(Z) + (EZ — b)? obviously takes on its minimum value of Var(Z) when b = EZ.

1.8.2. We say bg is a median of a random variable Z if P(Z < by) > 1/2 and P(Z > bg) > 1/2. Let by
be any median of Z. First suppose b > bg. Then,

—(b — bo) if 2 S b() _ _ .
|z—b0|—|z—b|:{2(z—bo)—(b—bo) if by < z < b g{bibb bo) igizo
b — bo if 2> b 0 0

Then, provided Z has a finite first moment, E|Z — by| —E|Z —b| < (b—b)P(Z > by) — (b—bo)P(Z < by) =
(b—100)(1 —2P(Z < bp)) < 0. Similarly, for b < by, we also have E|Z — bg| — E|Z —b| < 0. This shows that
f(b) =E|Z — b| is minimized at b — b .

1.8.3. Rule: For the decision problem with © = A = R and loss function,

[ Fk1]0—al, ifa<é,
L(e’a)_{k2|9—a|, ifa>0,

where ki and ko are known positive numbers, a Bayes rule with respect to a given prior distribution is
to estimate 6 as the pth quantile of the posterior distribution of € given the observations, where p =
kl/(kl + k?g) .

A number b is said to be a pth quantile of a distribution of a random variable 6 if P(§ <b) > p and

P >b) > 1—p. Suppose a > b. We are to show that E(L(6,a)) — E(L(6,b)) > 0, where b is a pth
quantile. Since for all 6,

L(0,0) ~ L(0,b) > (a — B)[KaT(6 < b) — K1 T(0 > b)],
where I(S) is the indicator function of the set S, we have,

E(L(0, a) — L(0,b)) > (a — b)[k2P(0 < b) — kaP(6 > b)]

(@ =b)[kop = k1 (1 = p)] = 0,

as was to be shown. A similar method works to show that for a < b, EL(6,a) > EL(6,b).

1.8.4. In the example with prior distribution (1.27) and distribution of X given 6 (1.26), the Bayes
estimate of 6 for absolute error loss is the median of the posterior distribution of 8, given as g(f|x) at the
bottom of page 45. To find the median of this distribution, we solve for the median, m:
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Solving for m gives m = x +1og(2) = x+.693 - - - as the Bayes estimate of 6 using absolute error loss, which
is to be compared to the estimate d(x) = = + 1, the Bayes estimate using squared error loss.

1.8.5. An interval of length 2¢, say (b— ¢, b+ ¢), is said to be a modal interval of length 2¢ for the
distribution of a random variable @, if P(b —c¢ < 6 < b+ ¢) takes on its maximum value out of all such

intervals. For the loss function | |
0 ifl@—al<c
L(Q,a)_{l if |0 —al > ¢,
EL(#,a) =P(|0 —a] >¢) =1 —P(a—c <0 < a+c) is minimized if a is chosen to be the midpoint of the
modal interval of length 2¢. Rule: In the problem of estimating a real parameter € with the above loss

function, a Bayes decision rule with respect to a given prior is to estimate 6 as the midpoint of the modal
interval of length 2c¢ of the posterior distribution of 6 given the observations.

1.8.6. If 7 is a prior distribution for § with density g(f), and if ¢ = Ew() = [w(8)g(6) df < co, then
g () = (1/c)w(8)g(0) is a density of a prior distribution, call it 7, for 8. If d is Bayes with respect to 7



for loss L(0,a) = (6 — a)?>w(#), then d is Bayes with respect to 7* for loss L*(6,a) = (6 — a)?, because in
either case d minimizes [(0 — d)?f(z|0)w(#)g(6) df. Hence, d cannot be unbiased unless r*(7*,d), which
is equal to 7(7,d) = [ [(6 — d(z))*f(z|0)w(0)g(0) df dz, is zero.

1.8.7. (a) The joint density of § and X is

h(0, ) = fx(x[0)g(0)
=e 07 /z! - (D(a)B*) " te 0/Ppa—t

for £ =0,1,... and 6 > 0. Hence g(f|x) is proportional to

e~ ((B+1)/B)6 gata—1

for 6 > 0, which makes g(f|z) the gamma distribution G(a + x, 3/(6+ 1)).

(b) Since the loss is squared error, we have do g(z) = E(f|z) = (o + 2)3/(8+ 1).

(c) If d(z) is Bayes with respect to 7, then 7(7,d) = 0. On the other hand, r(r,d) = E(§ — X)? =
E(E{(6 — X)?|0}) = E(). If © = (0,00), then E(f) > 0, since § > 0. But if © = [0, 00), then E(#) can be
zero, and in fact, d, or any rule d such that d(0) = 0, is Bayes with respect to the distribution degenerate
at 0. (For § =0, P(0) is defined to be degenerate at 0.)

(d) dap(x) =(ae+2)3/(B+1) ->d(x)=2z as a — 0 and 3 — .

(e) We want to find d to minimize

/Oo(e —d)%e%6%(1/0) db.
0

If 2 =0, then this integral is 400 unless d = 0. Hence, d(0) = 0. If z > 0, then minimizing this integral
is equivalent to finding d to minimize E(f — d)? when 6 has the distribution G(z,1), and so d(z) = x.
(f) Given € > 0, let 7. be the gamma distribution G(1,¢). Then,

r(re,d) = B(0 - d(X))* = E(E{(0 - X)*|0})
= E(Var(X10)) = E(f) = e.

Since the minimum Bayes risk cannot be negative, d certainly comes within € of minimizing the Bayes risk.
Since ¢ is arbitrary, d is extended Bayes. (The same must be true of any rule d such that d(0) =0.)

1.8.8. (a) Writing the joint density h(f,z) = g(0)f(x|0), and neglecting factors that do not involve 6,
we have
g(Blz) oc g2HT7L L (1 — gyt

which is the beta distribution, Be(«a + x, 8+ n — z).

(b) Since the loss is squared error, we have do g(z) = E(f|z) = (o + z)/(a+ 5 +n).

(¢) d(z) = x/n is an unbiased estimate of 6; so if d were also a Bayes rule with respect to 7, we would
have r(7,d) = 0. But r(7,d) = E(0 — X/n)? = E(E{(0 — X)?|0}) = E(0(1 — 6))/n, which is greater than
zero because (1 — ) > 0 for § € ©. This shows that d is not Bayes.

(d) dap(x) =(a+2z)/(a+B+n) —d(z) as « — 0 and § — 0.

(e) Consider the measure 7 on (0,1) such that dr(0) = df8/(6(1 — 6)). We want to minimize

1
= / (0 — a)26°=1(1 — 6)"—=~" dp.
0

If x =0, then I = oo unless a = 0. Hence, d(0) = 0. If x = n, then I = oo unless a = 1. Hence,
din) =1. If 0 < < n, then I is minimized by the mean of the Be(z,n — x) distribution, d(z) = z/n.
Thus d(x) = a = x/n minimizes I.

(f) Let € > 0, and consider the prior distribution 7 = Be(e, 1).

r(m,d) =E(0(1 - 0))/n <E@#)/n = (¢/(e+1))/n <e.
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This must come within € of the minimum Bayes risk for this 7.

1.8.9. For loss L(#,a) = (0 —a)?/(6(1 —60)) and uniform prior distribution g(f) = 1, the Bayes rule will
minimize the integral I of 1.8.8(e). Hence the Bayes rule is as found there: d(z) = z/n. Even though d is
an unbiased estimate of 6, this does not contradict Exercise 1.8.6 because E(w(f)) = E(1/(6(1 —0))) = cc.

1.8.10. Since the prior distribution of pi,p2 is ¢g(p1,p2) = 1 on the unit square, the joint density of
p1,p2, X, Y is proportional to h(p1,p2,2,y) = fxv (z,y|p1, p2). Hence,

g(p1,p2) < pi (L —p1)" “py(1 — p2)" 7Y,

so that the posterior distribution of p; and ps are as independent random variables with p; € Be(x +1,n —
x4+ 1) and ps € Be(y +1,n— y +1). The Bayes estimate of p; — py is therefore

d(z,y) = E(p1 — pol,y) = (¢ +1)/(n+2) = (y + 1)/ (n + 2).



