Solutions to the Exercises of Section 1.4.

1.4.1. Proof. (i) From linearity of <, either p <p or p < p. Thus, p <p and p ~ p.
(ii) If p1 < py and pp < p1, then py < p1 and p1 < py. So p1 ~ po implies py ~ p1.
(iii) If p; < py and py < p1, and if ps < p3 and p3 < ps, then from the transitivity of <, we have p; < p3
and p3 < p1, so that p; ~ ps3.

1.4.2. Proof. We are given p; < ps and ps < p3 but not p3 < ps. Then p; < p3 by transitivity. We
must show not ps < p;. If p3 < p1, then by transitivity ps < p2. This contradicts not p3 < ps, completing
the proof.

1.4.3. The statement is not quite correct. We should replace H; with the following:
H{: Suppose p, and p), are in P* for n = 1,2,..., and A\, > 0 and > "\, = 1. If p, < p/, for
all n, then Y07 Aupn < D07 Aupl,. If, in addition, p, < p|, for some n for which A, > 0, then
Dot AP < Dol Al -

We may then state the theorem as follows.

Theorem. If a preference pattern < on P* satisfies H; and Hs, then there exists a utility, u, on P*

which agrees with <. Furthermore, u is uniquely determined up to a linear transformation. Moreover, u is
bounded, and

(*) 'U'(Z )\npn) = Z )\nu(pn)

Proof. (Blackwell and Girshick) Since Hj implies Hy, the first two statements of the theorem folow from
Theorem 1 of the text. Now suppose that u is not bounded. Assume without loss of generality that it is
not bounded from above. Then we can find a sequence p,, € P* such that u(p,) > 2" and u(pn) > u(pn-1)
for all n. Let ¢ = .7 27"p, and gy = (Zf[ 27 "p,) + 2 Vpxn. Now hypothesis H| implies that qy < ¢
for all N, so that u(qn) < u(q) for all N. But ¢y is a finite mixture so we may compute u(qy) > N + 1.
This implies that u(g) > N 41 for all N which contradicts that requirement that u(q) be finite and shows
that w is bounded.

Now note that (%) is automatically true if A, is zero except for a finite number of values of n. So
assume that A, > 0 for an infinite number of values of n so that Y %, ; A, >0 for all N. Then
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where pV) = A,/ > N41 An- Since u is bounded,

i AnU(i M pn) =0

N+1 N+1
as N — oo, completing the proof of (x).
1.4.4. Let 0 < A < 1. By the definition of ~, p; ~ po is equivalent to p; < ps and ps < p;. From
hypothesis H; applied twice, this is equivalent to Ap; + (1 — N)g < Apa + (1 — A)g and Apa + (1 — V)¢ <
Ap1 + (1 — N)g. Again by the definition of ~, this is equivalent to Ap; + (1 — A)g ~ Ap2 + (1 — A)q.

1.4.5. Suppose that m1,...,m,, and 7, ..., 7 are two probability vectors such that
1 m

Ug[p1s -y Pm) = u(p1)m + - - + u(Pm)Tm = ulp)T + - +u(pm)m, forall pi,...,p, € P

Find g9 < ¢1 so that u(gq1) > u(go). Now for fixed i take p; = ¢1 and p; = go for j # i in this equation.
We find wu(qi)mi + 3, u(qo)m; = u(q)m; + 32, u(go)m;. This reduces to m;(u(q1) — u(qo)) + u(qo) =
i (u(g1) —u(qo)) +u(qo). But since u(q1) > u(qo), this implies that m; = 7. Since ¢ is arbitrary, this shows
uniqueness.



