Large Sample Theory

Ferguson

Exercises, Section 21, Asymptotic Normality of Posterior Distributions.

1. Let X_1, \ldots, X_n be a sample from the exponential distribution with density

$$f(x|\theta) = \theta e^{-\theta x}$$
 for $x > 0$

for some $\theta > 0$. Let the prior distribution of θ be the gamma distribution with density

$$g(\theta|\alpha,\eta) = \frac{\eta^{\alpha}}{\Gamma(\alpha)} e^{-\eta\theta} \theta^{\alpha-1}$$
 for $\theta > 0$

where η and α are given positive numbers.

- (a) Find the posterior distribution of θ given X_1, \ldots, X_n .
- (b) For the loss function,

$$L(\theta, a) = \begin{cases} 2(\theta - a) & \text{if } a < \theta \\ a - \theta & \text{if } a \ge \theta \end{cases}$$

(underestimation is the more serious error), what is the Bayes estimate? Suppose $\alpha = 4$, $\eta = 2$, $\overline{X}_n = 1$ and n = 6 or n = 46. Find the Bayes estimate (for both values of n) using the electronic statistical tables on the web.

- (c) For the same values of α , η , and \overline{X}_n , find the approximate Bayes estimate using the approximation to the posterior distribution of θ given by the Bernstein-von Mises Theorem.
- 2. Let X_1, \ldots, X_n be a sample from the geometric distribution with probability mass function, $f(x|\theta) = (1-\theta)\theta^x$ for $x = 0, 1, \ldots$, for some $\theta \in (0, 1)$. Suppose the prior density of θ on (0,1) is $g(\theta) = (\pi/2)\sin(\pi\theta)$. Find an approximation to the posterior density of θ that is good for sufficiently large samples.
- 3. A coin with probability θ of heads is tossed n times and the number of heads, X_n , is observed. The prior distribution of θ is uniform on the interval (0,1).
 - (a) Find the posterior density of θ given X_n .
- (b) What is the approximation to this density given by the Bernstein-von Mises Theorem?