Large Sample Theory

Ferguson

Exercises, Section 5, Central Limit Theorems.

- 1. (a) Using a Chebyshev's-Inequality-like argument, show that (assuming the expectations exist) $E|X|^{2+\alpha} \ge t^{\alpha}E[X^{2}I(|X| \ge t)]$ for all $\alpha > 0$ and t > 0.
- (b) Using part (a) and Lindeberg, prove Liapounov's Theorem: Let $X_{n1}, X_{n2}, \ldots, X_{nn}$ be independent with $EX_{nj} = 0$ and $E|X_{nj}|^{2+\alpha} < \infty$ for some $\alpha > 0$ and all n and j. Let $Z_n = \sum_{j=1}^n X_{nj}$ and $B_n^2 = \text{Var}Z_n = \sum_{j=1}^n \text{Var}X_{nj}$. Then $Z_n/B_n \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$, provided $\frac{1}{B_n^{2+\alpha}} \sum_{j=1}^n E|X_{nj}|^{2+\alpha} \to 0 \text{ as } n \to \infty.$
- 2. Let $X_1, X_2, ...$ be independent exponential random variables with means $\beta_1, \beta_2, ...$ respectively, and let $Z_n = X_1 + \cdots + X_n$. Show that if $\max_{1 \le j \le n} \beta_j^2 / \sum_{j=1}^n \beta_j^2 \to 0$ as $n \to \infty$, then $(Z_n EZ_n) / \sqrt{\operatorname{Var} Z_n} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$. (Use Liapounov's Theorem with $\alpha = 2$.)
- 3. (a) Let $X_1, X_2, ...$ be independent Poisson random variables with means $\lambda_1, \lambda_2, ...$ respectively, and let $Z_n = X_1 + \cdots + X_n$. Show that $(Z_n EZ_n)/\sqrt{\operatorname{Var} Z_n} \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,1)$ if and only if $\sum_{1}^{n} \lambda_j \to \infty$.
- (b) Show that this can provide an example to show you can get asymptotic normality without the Lindeberg condition being satisfied.
- 4. As an illustration of the use of Kendall's tau, here is a famous little example taken from M. G. Kendall's 1948 book, Rank Correlation Methods. Suppose a number of boys are ranked according to their ability in mathematics and music. Such a pair of rankings for ten boys, denoted by the letters A to J, might be as follows:

Boy:	A	B	C	D	E	F	G	H	I	J
Maths.:	7	4	3	10	6	2	9	8	1	5
Music:	5	7	3	10	1	9	6	2	8	4

Compute T_n , the number of discrepencies, and τ_n , Kendall's rank correlation coefficient. According to Kendall's tables, $P(T_n \ge 32) = .054$ for n = 10. Compare this probabilty with the normal approximation, using the correction for continuity.

- 5. Let X be a Poisson random variable with mean $\lambda = 10$.
- (a) Find the exact probability, $P(X \le 10)$. (You may use the calculators found on the web page http://www.math.ucla.edu/tom/distributions/CONTENTS.html)
 - (b) Find the normal approximation to $P(X \leq 10)$.
 - (c) Find the first Edgeworth approximation to $P(X \leq 10)$.
- (d) Find the second Edgeworth approximation to $P(X \leq 10)$. (Please make the corrections for continuity in all these approximations.)
- 6. (a) Let $X_1, X_2, ...$ be i.i.d. with $EX_i = 0$ and $Var X_i = 1$. Let $S_n = \sum_{j=1}^n a_{nj} X_j$ and $T_n = \sum_{j=1}^n b_{nj} X_j$, where a_{nj} and b_{nj} are constants, normalized so that $\sum_{j=1}^n a_{nj}^2 = a_{nj}^$

 $\sum_{j=1}^n b_{nj}^2 = 1$. Let $\rho_n = \sum_{j=1}^n a_{nj} b_{nj}$. Assume that $\rho_n \to \rho$, $\max_{j \le n} a_{nj}^2 \to 0$ and $\max_{j \le n} b_{nj}^2 \to 0$ as $n \to \infty$. Show that

$$(S_n, T_n) \xrightarrow{\mathcal{L}} \mathcal{N}((0, 0), \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}).$$

- (b) Apply the above to find the asymptotic joint distribution of $\sum_{1}^{n} X_{j}$ and $\sum_{1}^{n} j X_{j}$.
- 7. Let $X_1, X_2, ...$ be independent random variables with X_n having a uniform distribution over the interval [-n, n].
 - (a) Does $\overline{X}_n \stackrel{P}{\longrightarrow} 0$ as $n \to \infty$?
- (b) Does $\sqrt{n}\overline{X}_n \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2)$ for some number σ^2 ? If not, what can you say about the large sample distribution of \overline{X}_n ? (Maybe you should answer (a) after (b).)
- 8. The Coupon Collector's Problem. Coupons are drawn at random with replacement from among N distinct coupons until exactly n distinct coupons are observed. Let S_n denote the total number of coupons drawn. Then $S_n = Y_1 + \cdots + Y_n$, where Y_j is the number of coupons drawn after observing j-1 distinct coupons until the jth distinct coupon is drawn. Then Y_1, \ldots, Y_n are independent geometric random variables with means, $\mathrm{E}Y_j = N/(N-j+1)$, and variances, $\mathrm{Var}(Y_j) = N(j-1)/(N-j+1)^2$. Let $n = \lceil Nr \rceil$ for some fixed $r \in (0,1)$, and let N, and hence n, tend to ∞ . Show $\sqrt{n}((S_n/n)-m) \xrightarrow{\mathcal{L}} \mathcal{N}(0,\sigma^2)$ and find m and σ^2 as functions of r.
- 9. (a) Assume for a triangular array of independent variables that the X_{nj} are uniformly bounded, say $|X_{n,j}| < A$ for all n and j and some fixed constant A. Let $S_n = \sum_{j=1}^n X_{nj}$. Show that

$$\frac{S_n - \mathrm{E}(S_n)}{\sqrt{\mathrm{Var}(S_n)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1) \quad \text{provided} \quad \mathrm{Var}(S_n) \to \infty.$$

(b) Apply this to the binomial random variable, $Y_n \in \mathcal{B}(n, p_n)$, (which is a sum of independent Bernoullis) in the case $p_n = 1/\sqrt{n}$ to show that

$$\sqrt[4]{n} \left(\frac{Y_n}{\sqrt{n}} - 1 \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

- 10. Let X_1, X_2, \ldots, X_n be a sample from a distribution with distribution function F(x) and density f(x). A simple estimate of the density at a point x is given by $\hat{f}_n(x) = \frac{\hat{F}_n(x+b_n) \hat{F}_n(x-b_n)}{2b_n}$, where $\hat{F}_n(x)$ is the sample distribution function. Here, b_n is a sequence of constants tending to zero at an appropriate rate. Note that $Z_n = n(\hat{F}_n(x+b_n) \hat{F}_n(x-b_n))$ has a binomial distribution, $\mathcal{B}(n,p_n)$ where $p_n = F(x+b_n) F(x-b_n)$. Assume that x is a point of continuity of f and that f(x) > 0.
- (a) Using the preceding exercise, show that $\sqrt{2nb_n}(\hat{f}_n(x) E\hat{f}_n(x)) \xrightarrow{\mathcal{L}} \mathcal{N}(0, f(x))$, provided $b_n \to 0$ and $nb_n \to \infty$.

- (b) Assuming that f(x) is differentiable a suitable number of times, find extra conditions on b_n such that is it true that $\sqrt{2nb_n}(\hat{f}_n(x) f(x)) \xrightarrow{\mathcal{L}} \mathcal{N}(0, f(x))$.
- 11. Let X_1, X_2, \ldots be independent with $P(X_n = n) = P(X_n = -n) = p_n/2$ and $P(X_n = 0) = 1 p_n$, and let $Z_n = X_1 + \cdots + X_n$. Take $p_n = 1/n^2$.
- (a) Show, using the converse to the Lindeberg-Feller Theorem, that $\mathbb{Z}_n/\mathbb{B}_n$ is not asymptotically normal.
 - (b) What can you say about the asymptotic distribution of Z_n or Z_n/B_n ?
- 12. Show that the Lindeberg condition implies the uniformly asymptotically negligiblity (UAN) condition: $\max_{j \le n} \sigma_{nj}^2/B_n^2 \to 0$ as $n \to \infty$.