Large Sample Theory

Ferguson

Exercises, Section 1, Modes of Convergence.

- 1. (a) The case r=1 of Chebyshev's Inequality is known as Markov's Inequality and is usually written $P(|X| \ge \epsilon) \le E(|X|)/\epsilon$ for an arbitrary random variable X and $\epsilon > 0$. For each fixed $\epsilon > 1$, find a distribution for X with EX = 0 and E|X| = 1 that gives equality in Markov's inequality.
 - (b) Prove for an arbitrary random variable X,

$$P(|X| \ge \epsilon) \le \frac{E \cosh(X) - 1}{\cosh(\epsilon) - 1}.$$

- 2. Suppose that $f_n(x)$ and g(x) are densities, and that for all x, $f_n(x)$ converges to some constant (independent of x) times g(x). Does it follow that the random variable with density $f_n(x)$ converges in law to the random variable with density g(x)? If so, show it. If not, give a counterexample.
 - 3. Suppose that X_n has the binomial distribution, $\mathcal{B}(n,p)$ for some 0 .
 - (a) For fixed k, find $\lim_{n\to\infty} P(X_n \le k 1 | X_n \le k)$.
- (b) Let the distribution of Y_n be the conditional distribution of X_n given $X_n \leq k$. Express the result in (a) in the form $Y_n \xrightarrow{\mathcal{L}} Y$.
- 4. Let X have an inverse power distribution with distribution function, $F_X(x) = 1 x^{-\alpha}$ for $x \in [1, \infty)$, where $\alpha > 0$.
 - (a) Show $EX = \alpha/(\alpha 1)$ for $\alpha > 1$, and $Var(X) = \alpha/((\alpha 2)(\alpha 1)^2)$ for $\alpha > 2$.
- (b) Let $Y = (\alpha 1)X \alpha$ (so that Y has mean 0 and variance tending to 1 as $\alpha \to \infty$. Show that $Y \xrightarrow{\mathcal{L}} Z$ as $\alpha \to \infty$ for some random variable Z and find the distribution function of Z.
- 5. We say $X_n \xrightarrow{P} \infty$ if for every number B (no matter how big), $P(X_n > B) \to 1$ as $n \to \infty$. We say $X_n \xrightarrow{a.s.} \infty$ if for every number B, $P(X_k > B \text{ for every } k \ge n) \to 1$ as $n \to \infty$.

Suppose X_1, X_2, \ldots are independent with $P(0 \le X_j \le 1) = 1$ for all j. Let $S_n = \sum_{i=1}^{n} X_j$ and $\mu_n = ES_n$. Show that if $\mu_n \to \infty$ as $n \to \infty$, then $S_n \xrightarrow{P} \infty$. (Hint: Show $Var(X_i) \le EX_i$ and use Chebyshev's inequality.) Show that this implies $S_n \xrightarrow{a.s.} \infty$.